Skip to main content
Log in

Is There a Representative Elementary Volume for Anomalous Dispersion?

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The concept of the representative elementary volume (REV) is often associated with the notion of hydrodynamic dispersion and Fickian transport. However, it has been frequently observed experimentally and in numerical pore-scale simulations that transport is non-Fickian and cannot be characterized by hydrodynamic dispersion. Does this mean that the concept of the REV is invalid? We investigate this question by a comparative analysis of the advective mechanisms of Fickian and non-Fickian dispersions and their representation in large-scale transport models. Specifically, we focus on the microscopic foundations for the modeling of pore-scale fluctuations of Lagrangian velocity in terms of Brownian dynamics (hydrodynamic dispersion) and in terms of continuous-time random walks, which account for non-Fickian transport through broad distributions of advection times. We find that both approaches require the existence of an REV that, however, is defined in terms of the representativeness of Eulerian flow properties. This is in contrast to classical definitions in terms of medium properties such as porosity, for example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bear, J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)

    Google Scholar 

  • Berkowitz, B., Cortis, A., Dentz, M., Scher, H.: Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44(2), RG2003 (2006)

  • Bigi, B.: Using Kullback–Leibler distance for text categorization. In: European Conference on Information Retrieval, pp. 305–319. Springer (2003)

  • Bijeljic, B., Blunt, M.J.: Pore-scale modeling and continuous time random walk analysis of dispersion in porous media. Water Resour. Res. W01202 (2006). https://doi.org/10.1029/2005WR004578

    Article  Google Scholar 

  • Bijeljic, B., Mostaghimi, P., Blunt, M.J.: Signature of non-Fickian solute transport in complex heterogeneous porous media. Phys. Rev. Lett. 107(20), 204502 (2011)

    Article  Google Scholar 

  • Cortis, A., Berkowitz, B.: Anomalous transport in ‘classical’ soil and sand columns. Soil Sci. Soc. Am. J. 68(5), 1539 (2004). https://doi.org/10.2136/sssaj2004.1539

    Article  Google Scholar 

  • Cushman, J.H., Moroni, M.: Statistical mechanics with three-dimensional particle tracking velocimetry experiments in the study of anomalous dispersion. I. Theory. Phys. Fluids 13(1), 75–80 (2001). https://doi.org/10.1063/1.1328075

    Article  Google Scholar 

  • De Anna, P., Le Borgne, T., Dentz, M., Tartakovsky, A.M., Bolster, D., Davy, P.: Flow intermittency, dispersion, and correlated continuous time random walks in porous media. Phys. Rev. Lett. 110(18), 184502 (2013)

    Article  Google Scholar 

  • De Anna, P., Quaife, B., Biros, G., Juanes, R.: Prediction of velocity distribution from pore structure in simple porous media. Phys. Rev. Fluids 2, 124103 (2017). https://doi.org/10.1103/PhysRevFluids.2.124103

    Article  Google Scholar 

  • Dentz, M., Cortis, A., Scher, H., Berkowitz, B.: Time behavior of solute transport in heterogeneous media: transition from anomalous to normal transport. Adv. Water Resour. 27(2), 155–173 (2004)

    Article  Google Scholar 

  • Dentz, M., Kang, P.K., Comolli, A., Le Borgne, T., Lester, D.R.: Continuous time random walks for the evolution of lagrangian velocities. Phys. Rev. Fluids 1(7), 074004 (2016)

    Article  Google Scholar 

  • Dentz, M., Icardi, M., Hidalgo, J.J.: Mechanisms of dispersion in a porous medium. J. Fluid Mech. 841, 851–882 (2018). https://doi.org/10.1017/jfm.2018.120

    Article  Google Scholar 

  • Gardiner, C.: Stochastic Methods. Springer, Berlin (2010)

    Google Scholar 

  • Holzner, M., Morales, V.L., Willmann, M., Dentz, M.: Intermittent lagrangian velocities and accelerations in three-dimensional porous medium flow. Phys. Rev. E 92, 013015 (2015)

    Article  Google Scholar 

  • Kang, P.K., de Anna, P., Nunes, J.P., Bijeljic, B., Blunt, M.J., Juanes, R.: Pore-scale intermittent velocity structure underpinning anomalous transport through 3-d porous media. Geophys. Res. Lett. 41(17), 6184–6190 (2014). https://doi.org/10.1002/2014GL061475

    Article  Google Scholar 

  • Koponen, A., Kataja, M., Timonen, J.: Tortuous flow in porous media. Phys. Rev. E 54(1), 406 (1996)

    Article  Google Scholar 

  • Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  Google Scholar 

  • Lindgren, B., Johansson, A.V., Tsuji, Y.: Universality of probability density distributions in the overlap region in high reynolds number turbulent boundary layers. Phys. Fluids 16(7), 2587–2591 (2004)

    Article  Google Scholar 

  • Liu, Y., Kitanidis, P.K.: Applicability of the dual-domain model to nonaggregated porous media. Ground Water 50(6), 927–934 (2012)

    Article  Google Scholar 

  • Meyer, D.W., Bijeljic, B.: Pore-scale dispersion: bridging the gap between microscopic pore structure and the emerging macroscopic transport behavior. Phys. Rev. E 94(1), 013107 (2016)

    Article  Google Scholar 

  • Morales, V.L., Dentz, M., Willmann, M., Holzner, M.: Stochastic dynamics of intermittent pore-scale particle motion in three-dimensional porous media: experiments and theory. Geophys. Res. Lett. 44(18), 9361–9371 (2017)

    Article  Google Scholar 

  • Moroni, M., Cushman, J.H.: Statistical mechanics with three-dimensional particle tracking velocimetry experiments in the study of anomalous dispersion. II. Experiments. Phys. Fluids 13(1), 81–91 (2001). https://doi.org/10.1063/1.1328076

    Article  Google Scholar 

  • Noetinger, B., Roubinet, D., Russian, A., Le Borgne, T., Delay, F., Dentz, M., De Dreuzy, J.R., Gouze, P.: Random walk methods for modeling hydrodynamic transport in porous and fractured media from pore to reservoir scale. Transp. Porous Media 115, 1–41 (2016)

    Article  Google Scholar 

  • Painter, S., Cvetkovic, V.: Upscaling discrete fracture network simulations: an alternative to continuum transport models. Water Resour. Res. 41, W02002 (2005). https://doi.org/10.1029/2004WR003682

    Article  Google Scholar 

  • Puyguiraud, A., Gouze, P., Dentz, M.: Stochastic dynamics of Lagrangian pore-scale velocities in three-dimensional porous media. Water Resour. Res. (2019a). https://doi.org/10.1029/2018WR023702

    Article  Google Scholar 

  • Puyguiraud, A., Gouze, P., Dentz, M.: Upscaling of anomalous pore-scale dispersion. Transp. Porous Media 128, 837–855 (2019b)

    Article  Google Scholar 

  • Robert, R., Sommeria, J.: Statistical equilibrium states for two-dimensional flows. J. Fluid Mech. 229, 291–310 (1991). https://doi.org/10.1017/S0022112091003038

    Article  Google Scholar 

  • Saffman, P.: A theory of dispersion in a porous medium. J. Fluid Mech. 6(03), 321–349 (1959)

    Article  Google Scholar 

  • Taylor, G.: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 219(1137), 186–203 (1953)

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 617511 (MHetScale). This work was partially funded by the CNRS-PICS project CROSSCALE, Project Number 280090.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Dentz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puyguiraud, A., Gouze, P. & Dentz, M. Is There a Representative Elementary Volume for Anomalous Dispersion?. Transp Porous Med 131, 767–778 (2020). https://doi.org/10.1007/s11242-019-01366-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-019-01366-z

Keywords

Navigation