Skip to main content

Advertisement

Log in

Progress in utilizing plant-derived smoke water and smoke-derived KAR1 in plant tissue culture

  • Review
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Plant-derived smoke, its water extract—the smoke water (SW) and karrikinolide (KAR1) isolated from smoke or synthesized from different substrates stimulate germination of dormant and non-dormant seeds of plants from fire-prone and fire-free areas, including horticultural crops, agricultural crops and weeds. Both SW and KAR1 can be successfully used in in vitro cultures. They are able to stimulate pollen germination and growth of tubes. Growth of callus, efficiency of somatic embryogenesis, germination of somatic embryos and its conversion to plantlets are also positively affected by SW or KAR1. SW can stimulate seed germination in vitro, promote extension of primary root section and increase frequency for initiation of lateral roots. SW and KAR1 can be used as elicitors to increase production of secondary metabolites. This article describes discovery of biological activity of SW and KAR1 and provides an overview research on use of above factors in tissue and organ culture. The similarity of signaling pathways of karrikins compared to strigolactones or gibberellins is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

KAR1 :

Karrikin 1

SE:

Somatic embryogenesis

SW:

Smoke water

References

  • Abdollahi MR, Ghazanfari P, Corral-Martínez P, Moieni A, Seguí-Simarro JM (2012) Enhancing secondary embryogenesis in Brassica napus by selecting hypocotyl- derived embryos and using plant-derived smoke extract in culture medium. Plant Cell Tissue Organ Cult 110:307–315

    Google Scholar 

  • Aremu AO, Bairu MW, Finnie JF, Van Staden J (2012) Stimulatory role of smoke–water and karrikinolide on the photosynthetic pigment and phenolic contents of micropropagated ‘Williams’ bananas. Plant Growth Regul 67:271–279

    CAS  Google Scholar 

  • Aremu AO, Masondo NA, Van Staden J (2014) Smoke–water stimulates secondary metabolites during in vitro seedling development in Tulbaghia species. S Afr J Bot 91:49–52

    CAS  Google Scholar 

  • Banerjee A, Tripathi DK, Roychoudhury A (2019) The karrikin ‘calisthenics’: can compounds derived from smoke help in stress tolerance? Physiol Plant 165:290–302

    CAS  PubMed  Google Scholar 

  • Daws MI, Davies J, Pritchard HW, Brown NAC, Van Staden J (2007) Butenolide from plant-derived smoke enhances germination and seedling growth of arable weed species. Plant Growth Regul 51:73–82

    CAS  Google Scholar 

  • De Lange JH, Boucher C (1990) Autecological studies on Audouiniacapitata (Bruniaceae). I. Plant-derived smoke as a seed germination cue. S Afr J Bot 56:700–703

    Google Scholar 

  • Dhingra HR, Varghese TM (1985) Effect of growth regulators on the in vitro germination and tube growth of maize (Zea mays L.) pollen gfrom plants raised under sodium chloride salinity. New Phytol 100:563–569

    CAS  Google Scholar 

  • Dixon KW, Merritt DJ, Flematti GR, Ghisalberti EL (2009) Karrikinolide—a phytoreactive compound derived from smoke with applications in horticulture, ecological restoration and agriculture. Acta Hortic 813:155–170

    CAS  Google Scholar 

  • Flematti GR, GhisalbertiEL Dixon KW, Trengove RD (2004) A compound from smoke that promotes seed germination. Science 305:977

    CAS  PubMed  Google Scholar 

  • Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD (2005) Synthesis of the seed germination stimulant 3-methyl-2H-furo[2,3-c]pyran-2-one. Tetrahedron Lett 46:5719–5721

    CAS  Google Scholar 

  • Flematti GR, Waters MT, Scaffidi A, Merritt DJ, Ghisalberti EL, Dixon KW, Smith SM (2013) Karrikin and cyanohydrin smoke signals provide clues to new endogenous plant signaling compounds. Mol Plant 6:29–37

    CAS  PubMed  Google Scholar 

  • Flematti GR, Dixon KW, Smith SM (2015) What are karrikins and how were they ‘discovered’ by plants? BMC Biol 13:108

    PubMed  PubMed Central  Google Scholar 

  • Ghazanfari P, Abdollahi MR, Moieni A, Moosavi SS (2012) Effect of plant-derived smoke extract on in vitro plantlet regeneration from rapeseed (Brassica napus L. cv. Topas) microspore-derived embryos. Int J Plant Prod 6:1735–6814

    Google Scholar 

  • Goddard-Borger ED, Ghisalberti EL, Stick RV (2007) Synthesis of the germination stimulant 3-methyl-2H-furo[2,3-c]pyran-2-one and analogous compounds from carbohydrates. Eur J Org Chem 2007:3925–3934

    Google Scholar 

  • Igielski R, Kępczyńska E (2017) Gene expression and metabolite profiling of gibberellin biosynthesis during induction of somatic embryogenesis in Medicagotruncatula Gaertn. PloS ONE 7(12):e0182055

    Google Scholar 

  • Jain N, Stirk WA, Van Staden J (2008) Cytokinin-and auxin-like activity of a butenolide isolated from plant-derived smoke. S Afr J Bot 74:327–331

    CAS  Google Scholar 

  • Kameoka H, Kyozuka J (2015) Down regulation of rice DWARF 14 LIKE suppress mesocotyl elongation via a strigolactone independent pathway in the dark. J Genet Genom 42:119–124

    CAS  Google Scholar 

  • Kamran M, Khan AL, Ali L, Hussain J, Waqas M, AL-Harrasi A, Imran QM et al (2017) Hydroquinone; a novel bioactive compound from plant-derived smoke can cue seed germination of lettuce. Front Chem 5:30

    PubMed  PubMed Central  Google Scholar 

  • Kauth PJ, Dutra D, Johnson TR, Stewart SL, Kane ME, Vendrame W (2008) Techniques and applications of in vitro orchid seed germination. In: Teixeira JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues, vol V, 1st edn. Global Science Books, Isleworth, pp 375–379

    Google Scholar 

  • Kępczyńska E, Ruduś I, Kępczyński J (2009) Endogenous ethylene in indirect somatic embryogenesis of Medicago sativa L. Plant Growth Regul 59:63–73

    Google Scholar 

  • Kępczyński J (2018) Induction of agricultural weed seed germination by smoke and smoke- derived karrikin (KAR1), with a particular reference to Avena fatua L. Acta Physiol Plant 40:87

    Google Scholar 

  • Kępczyński J, Cembrowska D, Van Staden J (2010) Releasing primary dormancy in Avena fatua L. caryopses by smoke-derived butenolide. Plant Growth Regul 62:85–91

    Google Scholar 

  • Kochanek J, Long RL, Lisle AT, Flematti GR (2016) Karrikins identified in biochars indicate post-fire chemical cues can influence community diversity and plant development. PLoS ONE 11(8):e0161234

    PubMed  PubMed Central  Google Scholar 

  • Kumari A, Papenfus HB, Kulkrni MG, Pošta M, Van Staden J (2015) Effect of smoke derivatives on in vitro pollen germination and pollen tube elongation of species from different plant families. Plant Biol 17:825–830

    CAS  PubMed  Google Scholar 

  • Li W, Nguyen KH, Chu HD, Ha CV, Watanabe Y, Osakabe Y, Leyva- Gonzalez MA, Sato M, Toyooka K, Voges L, Tanaka M, Mostofa MG, Seki M, Seo M, Yamaguchi S, Nelson DC, Tian C, Herrera- Estrella L, Tran LSP (2017) The karrikin receptor KAI2 promotes drought resistance in Arabidopsis thaliana. PLoS Genet 13(11):e1007076

    PubMed  PubMed Central  Google Scholar 

  • Light ME, Daws MI, Van Staden J (2009) Smoke-derived butenolide: towards understanding its biological effects. S Afr J Bot 75:1–7

    CAS  Google Scholar 

  • Light ME, Burger BV, Staerk D, Kohout L, Van Staden J (2010) Butenolides from plant- derived smoke: natural plant-growth regulators with antagonistic actions on seed germination. J Nat Prod 73:267–269

    CAS  PubMed  Google Scholar 

  • Ma G-H, Bunn E, Dixon K, Flematti G (2006) Comparative enhancement of germination and vigor in seed and somatic embryos by the smoke chemical 3-methyl-2H-furo [2,3-C] pyran-2-one in Baloskion tetraphyllum (Restionaceae). In Vitro Cell Dev Biol 42:305–308

    CAS  Google Scholar 

  • Malabadi RB, Nataraja K (2007) Smoke-saturated water influences somatic embryogenesis using vegetative shoot apices of mature trees of Pinus wallichiana AB Jacks. J Plant Sci 2:45–53

    Google Scholar 

  • Malabadi RB, da Silva JAT, Mulgund GS (2008) Smoke-saturated water influences in vitro seed germination of Vanda parviflora Lindl. Seed Sci Biotechnol 2:65–69

    Google Scholar 

  • Malabadi RB, Vijaykumar S, da Silva JAT, Mulgund GS, Nataraja K (2011) In vitro seed germination of an epiphytic orchid Xenikophyton smeeanum (Reichb. f.) by using smoke-saturated-water as a natural growth promoter. Int J Biol Technol 2:35–41

    Google Scholar 

  • Matsuo K, Shindo M (2011) Efficient synthesis of karrikinolide via Cu(II)-catalyzed lactonization. Tetrahedron 67:971–975

    CAS  Google Scholar 

  • Mindrebo JT, Nartey CM, Seto Y, Burkart MD, Noel JP (2016) Unveiling the functional diversity of the alpha/beta hydrolase superfamily in the plant kingdom. Curr Opin Struct Biol 41:233–246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morffy N, Faure L, Nelson DC (2016) Smoke and hormone mirrors: action and evolution of karrikin and strigolactone signaling. Trends Genet 32:176–188

    CAS  PubMed  Google Scholar 

  • Nagase R, Katayama M, Mura H, Matsuo N, Tanabe Y (2008) Synthesis of the seed germination stimulant 3-methyl-2H-furo[2,3-c]pyran-2-ones utilizing direct and regioselective Ti-crossed aldol addition. Tetrahedron Lett 49:4509–4512

    CAS  Google Scholar 

  • Nelson SK, Steber CM (2016) Gibberellin hormone signal perception: down-regulating DELLA repressors of plant growth and development. Annu Rev Plant Biol 49:153–188

    CAS  Google Scholar 

  • Nelson DC, Scaffidi A, Dun EA, Waters MT, Flematti GR, Dixon KW, Beveridge CA, Ghisalberti EL, Smith SM (2011) F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc Natl Acad Sci USA 108:8897–8902

    CAS  PubMed  Google Scholar 

  • Nelson DC, Flematti GR, Ghisalberti EL, Dixon KW, Smith SM (2012) Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annu Rev Plant Biol 63:107–130

    CAS  PubMed  Google Scholar 

  • Papenfus HB, Kumari A, Kulkrni MG, Finnie JF, Van Staden J (2014) Smoke-water enhances in vitro pollen germination and tube elongation of three species of Amaryllidaceae. S Afr J Bot 90(87):92

    Google Scholar 

  • Papenfus HB, Naidoo D, Pošta M, Finnie JF, Van Staden J (2016) The effects of smoke derivatives on in vitro seed germination and development of the leopard orchid Ansellia Africana. Plant Biol 18:289–294

    CAS  PubMed  Google Scholar 

  • Parry G, Calderon-Villalobos LI, Prigge M, Peret B, Dharmasiri S, Itoh H, Lechner E et al (2009) Complex regulation of the TIR1/AFB family of auxin receptors. Proc Natl Acad Sci USA 106:22540–22545

    CAS  PubMed  Google Scholar 

  • Raemakers CJJM, Jacobsen E, Visser RGF (1995) Secondary somatic embryogenesis and applications in plant breeding. Euphytica 81:93–107

    Google Scholar 

  • Ruduś I, Kępczyńska E, Kępczyński J (2006) Comparative efficacy of abscisic acid and methyl jasmonate for indirect somatic embryogenesis in Medicago sativa L. Plant Growth Regul 48:1–11

    Google Scholar 

  • Senaratna T, Dixon K, Bunn E, Touchell D (1999) Smoke-saturated water promotes somatic embryogenesis in geranium. Plant Growth Regul 28:95–99

    CAS  Google Scholar 

  • Soos V, Badics E, Incze N, Balazas E (2019) Fire-borne life: A brief review of smoke-induced germination. Nat Prod Commun. https://doi.org/10.1177/1934578X19872925

    Article  Google Scholar 

  • Stevens JC, Merrit DJ, Flematti GR, Ghisalberti EL, Dixon KW (2007) Seed germination of agricultural weeds is promoted by the butenolide 3-methyl-2H-furo{2,3-c}pyran-2-one under laboratory and field conditions. Plant Soil 298:113–124

    CAS  Google Scholar 

  • Sun K, Chen Y, Wagerle T, Linnstaedt D, Currie M, Chmura P, Song Y, Xu M (2008) Synthesis of butenolides as seed germination stimulants. Tetrahedron Lett 49:2922–2925

    CAS  Google Scholar 

  • Taylor JLS, Van Staden J (1998) Plant-derived smoke solutions stimulate the growth of Lycopersicon esculentum roots in vitro. Plant Growth Regul 26:77–83

    CAS  Google Scholar 

  • Van Staden J, Jäger AK, Light ME, Burge BV (2004) Isolation of the major germination cue from plant-derived smoke. S Afr J Bot 70:654–659

    Google Scholar 

  • Wallner E-S, López-Salmerón V, Greb T (2016) Strigolactone versus gibberellin signaling: reemerging concepts? Planta 243:1339–1350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waters MT, Scaffidi A, Sun YK, Flematti GR, Smith SM (2014) The karrikin response system of Arabidopsis. Plant J 79:623–631

    CAS  PubMed  Google Scholar 

  • Waters MT, Scaffidi A, Moulin SLY, Sun YK, Flematti GR, Smith SM (2015) A Selaginella moellendorffii ortholog of KARRIKIN INSENSITIVE2 functions in Arabidopsis development but cannot mediate responses to karrikins or strigolactones. Plant Cell 27:1925–1944

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Xu Z, Ran Z, Fang L, Guo L (2018) Effects of smoke-water and smoke-derived butenolide on accumulation of phenolic acids in cultured hairy roots of Salvia miltiorrhiza Bung. Bangladesh J Bot 47:479–485

    Google Scholar 

  • Zhou J, Ran Z-F, Liu Q, Xu Z-X, Xiong Y-H, Fang L, Guo L-P (2019a) Jasmonic acid serves as a signal role in smoke-isolated butenolide-induced tanshinones biosynthesis in Salvia miltiorrhiza hairy root. S Afr J Bot 121:355–359

    CAS  Google Scholar 

  • Zhou J, Xu Z-X, Sun H, Guo L-P (2019b) Smoke-isolated karrikins stimulated tanshinones biosynthesis in Salvia miltiorrhiza through endogenous nitric oxide and jasmonic acid. Molecules 24:1229

    PubMed Central  Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I would like to express my gratitude to professor Ewa Kępczyńska for reading and commenting on the manuscript draft. I thank Kinga Rybak for technical assistance and to Teresa Radziejewska for linguistic assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kępczyński.

Additional information

Communicated by Jose M. Segui-Simarro.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kępczyński, J. Progress in utilizing plant-derived smoke water and smoke-derived KAR1 in plant tissue culture. Plant Cell Tiss Organ Cult 140, 271–278 (2020). https://doi.org/10.1007/s11240-019-01739-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-019-01739-8

Keywords

Navigation