Skip to main content
Log in

Abscisic acid and salinity stress induced somaclonal variation and increased histone deacetylase (HDAC) activity in Ananas comosus var. MD2

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Somaclonal and phenotypic variation caused by genetic and/or epigenetic modifications, are a valuable source of genetic variation to improve desirable polygenetic traits in crops. In this study, we induced somaclonal variation in vitro pineapple (Ananas comosus var. MD2) through hormonal induction, NaCl, and abscisic acid (ABA) supplementation. Our results showed that supplementation of high concentration of 6-benzylaminopurine (4.0 mg/L BAP) alone or combined with indole-butyric acid (IBA) produced the highest percentage of dwarf variants (100%). Murashige and Skoog (MS) media containing 4.0 mg/L BAP plus 2.0 mg/L IBA produced the shortest plantlets (1.9 ± 0.1 cm). In comparison, MS media containing 1.0% NaCl induced formation of dwarf plantlets with a mean plantlet height of 1.4 ± 0.3 cm, whereas 1.0 mg/L ABA generated plantlets with a mean plantlet height of 1.7 ± 0.1 cm. We then analyzed the histone deacetylase (HDAC) enzyme activity for dwarf and non-dwarf plantlets. In general, dwarf plantlets exhibited higher HDAC activity than non-dwarf plantlets. The highest HDAC activity (109, 333.33 ± 4.40 ng/min/mg) was recorded for dwarf plantlets grown on media supplemented with 1.0 mg/L ABA. The dwarf variants also underwent phenotypic recovery to normal phenotype within 8 months after transferred to MS basal media. No ploidy alteration was detected in these dwarf plantlets after analyzed by flow cytometry. Taken together, although the generated dwarf plantlets showed higher HDAC activity compared to non-dwarf plantlets, their capability of reverting to non-dwarf phenotype suggested that it might be due to epigenetic modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akhilomen L, Bivan G, Rahman S, Sanni S (2015) The profitability analysis and perceived constraints of farmers in pineapple production in Edo State, Nigeria. Am J Exp Agric 5(6):546

    Article  Google Scholar 

  • Alwee SS, Van der Linden CG, Van der Schoot J, de Folter S, Angenent GC, Cheah S-C, Smulders MJM (2006) Characterization of oil palm MADS box genes in relation to the mantled flower abnormality. Plant Cell Tissue Organ Cult 85(3):331–344. https://doi.org/10.1007/s11240-006-9084-4

    Article  Google Scholar 

  • Amini A, Masoumi-Moghaddam S, Morris DL (2016) Bromelain utility of bromelain and N-acetylcysteine in treatment of peritoneal dissemination of gastrointestinal mucin-producing malignancies. Springer, Cham, pp 63–80

    Book  Google Scholar 

  • Bairu MW, Aremu AO, Van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63(2):147–173

    Article  CAS  Google Scholar 

  • Baruwa OI (2013) Profitability and constraints of pineapple production in Osun state, Nigeria. J Hortic Res 21(2):59–64

    Article  Google Scholar 

  • Bassett SA, Barnett MP (2014) The role of dietary histone deacetylases (HDACs) inhibitors in health and disease. Nutrients 6(10):4273–4301

    Article  PubMed  PubMed Central  Google Scholar 

  • Boyko A, Kovalchuk I (2013) Epigenetic regulation of genome stability in plants in response to stress epigenetic memory and control in plants. Springer, Berlin, pp 41–56

    Book  Google Scholar 

  • Cardoza V, Stewart CN Jr (2004) Brassica biotechnology: progress in cellular and molecular biology. In Vitro Cell Dev Biol Plant 40(6):542–551

    Article  CAS  Google Scholar 

  • Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325(5942):834–840

    Article  CAS  PubMed  Google Scholar 

  • Colville A, Alhattab R, Hu M, Labbé H, Xing T, Miki B (2011) Role of HD2 genes in seed germination and early seedling growth in Arabidopsis. Plant Cell Rep 30(10):1969

    Article  CAS  PubMed  Google Scholar 

  • Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci USA 101(42):15243–15248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coombs A (2013) Deacetylation ensures timely regulation of flowering. PLoS Biol 11(9):e1001646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuperlovic-Culf M, Culf AS (2014) Role of histone deacetylases in fungal phytopathogenesis: a review. Int J Mod Bot 4(2):48–60

    Google Scholar 

  • de Ancos B, Sánchez-Moreno C, Adolfo G (2017) Pineapple composition and nutrition. Handbook of pineapple technology: postharvest science, processing and nutrition. Wiley, Chichester

    Google Scholar 

  • Deng X, Song X, Wei L, Liu C, Cao X (2016) Epigenetic regulation and epigenomic landscape in rice. Natl Sci Rev 3(3):309–327

    Article  Google Scholar 

  • Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2(9):2233–2244

    Article  PubMed  Google Scholar 

  • Eeuwens CJ, Lord S, Donough CR, Rao V, Vallejo G, Nelson S (2002) Effects of tissue culture conditions during embryoid multiplication on the incidence of “mantled’’ flowering in clonally propagated oil palm. Plant Cell Tissue Organ Cult 70(3):311–323. https://doi.org/10.1023/a:1016543921508

    Article  CAS  Google Scholar 

  • Ephritikhine G, Fellner M, Vannini C, Lapous D, Barbier-Brygoo H (1999) The sax1 dwarf mutant of Arabidopsis thaliana shows altered sensitivity of growth responses to abscisic acid, auxin, gibberellins and ethylene and is partially rescued by exogenous brassinosteroid. Plant J 18(3):303–314. https://doi.org/10.1046/j.1365-313X.1999.00454.x

    Article  CAS  PubMed  Google Scholar 

  • Finkemeier I, Laxa M, Miguet L, Howden AJ, Sweetlove LJ (2011) Proteins of diverse function and subcellular location are lysine acetylated in Arabidopsis. Plant Physiol 155(4):1779–1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraga HP, Vieira LN, Heringer AS, Puttkammer CC, Silveira V, Guerra MP (2016) DNA methylation and proteome profiles of Araucaria angustifolia (Bertol.) Kuntze embryogenic cultures as affected by plant growth regulators supplementation. Plant Cell Tissue Organ Cult 125(2):353–374

    Article  CAS  Google Scholar 

  • Gabriel W (2005) How stress selects for reversible phenotypic plasticity. J Evol Biol 18(4):873–883

    Article  CAS  PubMed  Google Scholar 

  • Giménez C, De Garcia E, De Enrech NX, Blanca I (2001) Somaclonal variation in banana: cytogenetic and molecular characterization of the somaclonal variant CIEN BTA-03. In Vitro Cell Dev Biol-Plant 37(2):217–222

    Article  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31(1):149–190

    Article  CAS  Google Scholar 

  • Grieve CM, Grattan SR, Maas EV, Wallender W, Tanji K (2012) Plant salt tolerance. Agricultural salinity assessment and management. 2nd edn, vol 71. ASCE manual reports on engineering practice. ASCE, Reston, pp 405–459

  • Hebbes TR, Thorne AW, Crane-Robinson C (1988) A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J 7(5):1395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson GM, Watson PJ, Fairall L, Jamieson AG, Schwabe JW (2015) Insights into the Recruitment of Class IIa histone deacetylases (HDACs) to the SMRT/NCoR transcriptional repression complex. J Biol Chem 290(29):18237–18244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain S, Brar D, Ahloowalia B (2013) Somaclonal variation and induced mutations in crop improvement, vol 32. Springer, Dordrecht

    Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60(4):197–214

    Article  CAS  PubMed  Google Scholar 

  • Latham T, Mackay L, Sproul D, Karim M, Culley J, Harrison DJ, Hayward L, Langridge-Smith P, Gilbert N, Ramsahoye BH (2012) Lactate, a product of glycolytic metabolism, inhibits histone deacetylase activity and promotes changes in gene expression. Nucleic Acids Res 40(11):4794–4803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law RD, Suttle JC (2005) Chromatin remodeling in plant cell culture: patterns of DNA methylation and histone H3 and H4 acetylation vary during growth of asynchronous potato cell suspensions. Plant Physiol Biochem 43(6):527–534 doi. https://doi.org/10.1016/j.plaphy.2005.03.014

    Article  CAS  PubMed  Google Scholar 

  • Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128(4):707–719

    Article  CAS  PubMed  Google Scholar 

  • Li X, Lu J, Liu S, Liu X, Lin Y, Li L (2014) Identification of rapidly induced genes in the response of peanut (Arachis hypogaea) to water deficit and abscisic acid. BMC Biotechnol 14(1):58. https://doi.org/10.1186/1472-6750-14-58

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Chen C-Y, Wang K-C, Luo M, Tai R, Yuan L, Zhao M, Yang S, Tian G, Cui Y (2013) PHYTOCHROME INTERACTING FACTOR3 associates with the histone deacetylase HDA15 in repression of chlorophyll biosynthesis and photosynthesis in etiolated Arabidopsis seedlings. Plant Cell 25(4):1258–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Yang S, Zhao M, Luo M, Yu C-W, Chen C-Y, Tai R, Wu K (2014) Transcriptional repression by histone deacetylases in plants. Mol Plant 7(5):764–772

    Article  CAS  PubMed  Google Scholar 

  • Lobo MG, Paull RE (2017) Handbook of pineapple technology: postharvest science, processing and nutrition. Wiley, Chichester

    Book  Google Scholar 

  • Lobo MG, Siddiq M (2017) Overview of pineapple production, postharvest physiology, processing and nutrition. In: Lobo MG, Paull RE (eds) Handbook of pineapple technology: postharvest science, processing and nutrition. Wiley, Hoboken

    Chapter  Google Scholar 

  • Lopez-Atalaya JP, Ito S, Valor LM, Benito E, Barco A (2013) Genomic targets, and histone acetylation and gene expression profiling of neural HDAC inhibition. Nucleic Acids Res 41(17):8072–8084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo M, Wang Y-Y, Liu X, Yang S, Lu Q, Cui Y, Wu K (2012) HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis. J Exp Bot 63:3297–3306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutts S, Kinet J-M, Bouharmont J (2001) Somaclonal variation in rice after two successive cycles of mature embryo derived callus culture in the presence of NaCl. Biol Plant 44(4):489–495

    Article  Google Scholar 

  • Ma X, Lv S, Zhang C, Yang C (2013) Histone deacetylases and their functions in plants. Plant Cell Rep 32(4):465–478

    Article  CAS  PubMed  Google Scholar 

  • Maier T, Güell M, Serrano L (2009) Correlation of mRNA and protein in complex biological samples. FEBS Lett 583(24):3966–3973

    Article  CAS  PubMed  Google Scholar 

  • Mansor A, Shamsudin R, Mohd Adzahan N, Hamidon MN (2017) Performance of UV pasteurization with quartz glass sleeve on physicochemical properties and microbial activity of pineapple juice. J Food Process Eng 40(1):8

    Article  Google Scholar 

  • Miguel C, Marum L (2011) An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. J Exp Bot 62(11):3713–3725

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57(5):1025–1043. https://doi.org/10.1093/jxb/erj100

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Nwauzoma A, Jaja E (2013) A review of somaclonal variation in plantain (Musa spp): mechanisms and applications. J Appl Biosci 67:5252–5260

    Article  Google Scholar 

  • Qiu J, Hou Y, Wang Y, Li Z, Zhao J, Tong X, Lin H, Wei X, Ao H, Zhang J (2017) A comprehensive proteomic survey of ABA-induced protein phosphorylation in rice (Oryza sativa L.). Int J Mol Sci 18(1):60

    Article  PubMed Central  Google Scholar 

  • Rastogi J, Siddhant PB, Sharma BL (2015) Somaclonal variation: a new dimension for sugarcane improvement. GERF Bull Biosci 6(1):5–10

    Google Scholar 

  • Richardson RB, Kellon D, Leon RG, Arvai J (2013) Using choice experiments to understand household tradeoffs regarding pineapple production and environmental management in Costa Rica. J Environ Manage 127:308–316

    Article  PubMed  Google Scholar 

  • Schlichting CD (1986) The evolution of phenotypic plasticity in plants. Annu Rev Ecol Syst 17:667–693

    Article  Google Scholar 

  • Semal J (2013) Somaclonal variations and crop improvement, vol 20. Springer, Berlin

    Google Scholar 

  • Smulders M, De Klerk G (2011) Epigenetics in plant tissue culture. Plant Growth Regul 63(2):137–146

    Article  CAS  Google Scholar 

  • Su L-C, Deng B, Liu S, Li L-M, Hu B, Zhong Y-T, Li L (2015) Isolation and characterization of an osmotic stress and ABA induced histone deacetylase in Arachis hygogaea. Front Plant Sci 6:512. https://doi.org/10.3389/fpls.2015.00512

    PubMed  PubMed Central  Google Scholar 

  • Sun S, Zhong J, Li S, Wang X (2013) Tissue culture-induced somaclonal variation of decreased pollen viability in torenia (Torenia fournieri Lind.). Botanical Stud 54(1):36

    Article  Google Scholar 

  • Tanurdzic M, Vaughn MW, Jiang H, Lee T-J, Slotkin RK, Sosinski B, Thompson WF, Doerge RW, Martienssen RA (2008) Epigenomic consequences of immortalized plant cell suspension culture. PLoS Biol 6(12):e302

    Article  PubMed Central  Google Scholar 

  • Thangaraju M, Gopal E, Martin PM, Ananth S, Smith SB, Prasad PD, Sterneck E, Ganapathy V (2006) SLC5A8 triggers tumor cell apoptosis through pyruvate-dependent inhibition of histone deacetylases. Can Res 66(24):11560–11564

    Article  CAS  Google Scholar 

  • Tsaftaris AS, Polidoros AN, Koumproglou R, Tani E, Kovacevic N, Abatzidou E (2005) Epigenetic mechanisms in plants and their implications in plant breeding. In: Tuberosa R, Philips R, Gale M (eds) The wake of the double helix: from the green revolution to the gene revolution. Avenue Media, Bologna, pp 157–171

    Google Scholar 

  • Van Wyk BE (2005) Food plants of the world: identification, culinary uses and nutritional value. Briza Publications, Pretoria

    Google Scholar 

  • Van Oosten MJ, Bressan RA, Zhu J-K, Bohnert HJ, Chinnusamy V (2014) The role of the epigenome in gene expression control and the epimark changes in response to the environment. Crit Rev Plant Sci 33(1):64–87

    Article  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):research0034.1

    Article  Google Scholar 

  • Verslues PE, Bray EA (2006) Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. J Exp Bot 57(1):201–212

    Article  CAS  PubMed  Google Scholar 

  • Wardy W, Saalia FK, Steiner-Asiedu M, Budu AS, Sefa-Dedeh S (2009) A comparison of some physical, chemical and sensory attributes of three pineapple (Ananas comosus) varieties grown in Ghana. Afr J Food Sci 3(4):094–099

    CAS  Google Scholar 

  • Wu K, Tian L, Zhou C, Brown D, Miki B (2003) Repression of gene expression by Arabidopsis HD2 histone deacetylases. Plant J 34(2):241–247

    Article  CAS  PubMed  Google Scholar 

  • Yaacob JS, Loh H-S, Mat Taha R (2013) Protein profiling and histone deacetylation activities in somaclonal variants of oil palm (Elaeis guineensis Jacq.). Sci World J. https://doi.org/10.1155/2013/613635.5

    Google Scholar 

  • Zaffari G, Peres L, Kerbauy G (1998) Endogenous levels of cytokinins, indoleacetic acid, abscisic acid, and pigments in variegated somaclones of micropropagated banana leaves. J Plant Growth Regul 17(2):59–61

    Article  CAS  Google Scholar 

  • Zanten M, Zöll C, Wang Z, Philipp C, Carles A, Li Y, Kornet NG, Liu Y, Soppe WJ (2014) HISTONE DEACETYLASE 9 represses seedling traits in Arabidopsis thaliana dry seeds. Plant J 80(3):475–488

    Article  PubMed  Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res 97(1):111–119

    Article  Google Scholar 

  • Zhang M, Smith JAC, Harberd NP, Jiang C (2016) The regulatory roles of ethylene and reactive oxygen species (ROS) in plant salt stress responses. Plant Mol Biol 91:651–659

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Ministry of Higher Education, Malaysia for the financial support (FRGS Grant No. FP041-2014A) and University of Malaya, Malaysia, for providing the experimental facilities and PPP grant PG117-2015A.

Author information

Authors and Affiliations

Authors

Contributions

JSY and NK conceived and designed the research. NAAH and MRM conducted the experiments. JSY, NK and MM contributed reagents and analytical tools. NAAH, BCT and JSY analyzed the data. NAAH, BCT and JSY wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Jamilah Syafawati Yaacob.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Yu-Jin Hao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halim, N.A.A., Tan, B.C., Midin, M.R. et al. Abscisic acid and salinity stress induced somaclonal variation and increased histone deacetylase (HDAC) activity in Ananas comosus var. MD2. Plant Cell Tiss Organ Cult 133, 123–135 (2018). https://doi.org/10.1007/s11240-017-1367-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1367-4

Keywords

Navigation