Advertisement

Structural Chemistry

, Volume 23, Issue 2, pp 551–580 | Cite as

Quantum investigation of non-bonded interaction between the B15N15 ring and BH2NBH2 (radical, cation, anion) systems: a nano molecularmotor

  • Majid MonajjemiEmail author
Original Research

Abstract

The electromagnetic non-bonded interactions of BH2NBH2 molecule inside the B15N15 ring has been investigated with B3LYP method using EPR-II and EPR-III basis sets. Optimized structures, relative stability, and hyperfine spectroscopic parameters, such as total atomic charges, spin densities, electrical potential, and isotropic Fermi coupling constants of radical, cationic, and anionic forms of BH2NBH2 in different loops and bonds have been calculated. The spectral properties have been contributed to explain the characteristics of hyperfine electronic structure. The calculation for the B15N15–BH2NBH2 system and then for adenine–thymine base pairs coupled with BH2NBH2 molecule inside the B15N15 ring (A–BNB–T) have been done and three quantized rotational frequencies for transitions among cationic, radical, and anionic have been calculated, too. All observed frequencies appeared in the IR rotational region. So, this system can be used for the measurement of rotational spectra related to electrical voltage differences existing in macromolecules such as proteins and DNA and membrane. Extensive calculations have been carried out on the radical, anionic, and cationic forms of BH2NBH2 to obtain data and it has been observed that the radial coordinate of the dipole moment vector (r) as well as the voltage differences (ΔV) and relative energies (ΔE) exhibited Gaussian distribution. We have obtained a relationship between dipole moments and the voltage differences and energies of system.

Keywords

Boron nitride cages Non-bounded interaction NQR HOMO LUMO NBO Hyperfine properties DFT Dipole moment EPR-II EPR-III 

Notes

Acknowledgment

The portion of this study done in Austin has been supported by grant F-100 from the Welch Foundation.

References

  1. 1.
    Silberberg MS (2009) Chemistry, 5th edn. McGraw-Hill, New York, p 483Google Scholar
  2. 2.
    Crane T, Cowan PBP (2000) Phys Rev B 62:11359CrossRefGoogle Scholar
  3. 3.
    Zedlitz R (1996) J Non-Cryst Solids 198–200:403CrossRefGoogle Scholar
  4. 4.
    Henager CH Jr (1993) Appl Opt 32:91CrossRefGoogle Scholar
  5. 5.
    Weissmantel S (1999) Diam Relat Mater 8:377CrossRefGoogle Scholar
  6. 6.
    Leichtfried G (2002) Landolt–Börnstein—Group VIII advanced materials and technologies: powder metallurgy data. Refractory, hard and intermetallic materials. 2A2. Springer, Berlin, pp 118–139Google Scholar
  7. 7.
    Delhaes P (2001) Graphite and precursors. CRC Press, Boca Raton ISBN 9056992287Google Scholar
  8. 8.
    Watanabe K, Taniguchi T, Kanda H (2004) Nat Mater 3:404CrossRefGoogle Scholar
  9. 9.
    Taniguchi T, Watanabe K, Koizumi S, Sakaguchi I, Sekiguchi T, Yamaoka S (2002) Appl Phys Lett 81:22–4145CrossRefGoogle Scholar
  10. 10.
    Locke IW, Darwish AD, Kroto HW, Prassides K, Taylor R, Walton DRM (1994) Chem Phys Lett 225:186CrossRefGoogle Scholar
  11. 11.
    Behrman EC, Foehrweiser RK, Myers JR, French BR, Zandler ME (1994) Phys Rev A 49:R1543CrossRefGoogle Scholar
  12. 12.
    Kaxiras E, Jackson K, Pederson MR (1994) Chem Phys Lett 225:448CrossRefGoogle Scholar
  13. 13.
    Barone V (1996) In: Chong DP (ed) Recent advances in density functional methods, Part I. World Scientific Publ. Co., SingaporeGoogle Scholar
  14. 14.
    Oku K, Nishiwaki A, Narita I, Gonda M (2003) Chem Phys Lett 380:620–623CrossRefGoogle Scholar
  15. 15.
    Slanina Z, Sun M-L, Lee SL (1997) NanoStruct Mater 8(5):623CrossRefGoogle Scholar
  16. 16.
    Fowler PW, Rogers KM, Seifert G, Terrones M, Terrones H (1999) Chem Phys Lett 299:359–367CrossRefGoogle Scholar
  17. 17.
    Liu Y, Wenli Z, Isaac BB, Boggs JE (2009) J Chem Phys 30:184305CrossRefGoogle Scholar
  18. 18.
    Loiseau A, Willaime F, Demoncy N, Schramchenko N, Hug G (1998) Carbon 36(5–6):743-752, 1598Google Scholar
  19. 19.
    Sun ML, Slanina Z, Lee SL (1995) Chem Phys Lett 233:279–283CrossRefGoogle Scholar
  20. 20.
    Seifert G, Fowler RW, Mitchell D, Porezag D, Frauenheim T (1997) Chem Phys Lett 268:352–358CrossRefGoogle Scholar
  21. 21.
    Takeo O, Masaki K, Hidehiko K, Ichihito N (2001) Int J Inorg Mater 3:597–612CrossRefGoogle Scholar
  22. 22.
    Xu SH, Zhang MY, Zhao YY, Cheng BG, Zhang J, Sun CC (2006) Chem Phys Lett 418:297–301CrossRefGoogle Scholar
  23. 23.
    Strout DL (2000) J Phys Chem A 104:3364–3366CrossRefGoogle Scholar
  24. 24.
    Strout DL (2001) J Phys Chem A 105:261–263CrossRefGoogle Scholar
  25. 25.
    Strout DL (2004) Chem Phys Lett 383:95–98CrossRefGoogle Scholar
  26. 26.
    Alexandre SS, Mazzoni MSC, Chacham H (1999) Appl Phys Lett 75:61–63CrossRefGoogle Scholar
  27. 27.
    Alexandre SS, Nunes RW, Chacham H (2002) Phys Rev B 66:085–406CrossRefGoogle Scholar
  28. 28.
    Wu HS, Jiao HJ (2004) Chem Phys Lett 386:369–372CrossRefGoogle Scholar
  29. 29.
    Wu HS, Xu XH, Strout DL, Jiao HJ (2005) J Mol Model 12:1–8CrossRefGoogle Scholar
  30. 30.
    Rogers KW, Fowler PW, Seifert G (2000) Chem Phys Lett 332:43–50CrossRefGoogle Scholar
  31. 31.
    Zhu HY, Schmalz TG, Klein DJ (1997) Int J Quant Chem 63:393–401CrossRefGoogle Scholar
  32. 32.
    Manolopoulos DE, Fowler PW (1991) Chem Phys Lett 187:1–7CrossRefGoogle Scholar
  33. 33.
    Zope RR, Dunlap BI (2004) Chem Phys Lett 386:403–407CrossRefGoogle Scholar
  34. 34.
    Knight LB Jr, Hill DW, Kirk TJ, Arrington CA (1992) J Phys Chem 96:555CrossRefGoogle Scholar
  35. 35.
    Slanina Z, Martin JML, Franqois J-P, Gijbels R (1993) Chem Phys Lett 201:54CrossRefGoogle Scholar
  36. 36.
    Slanina Z, Martin JML, Franqois JP, Gijbels R (1993) Chem Phys 178:77CrossRefGoogle Scholar
  37. 37.
    Martin JML, Slanina Z, Franqois JP, Gijbels R (1994) Mol Phys 82:155CrossRefGoogle Scholar
  38. 38.
    Iijima S, Ichihashi T (1993) Nature 363:603CrossRefGoogle Scholar
  39. 39.
    Ajayan PM (1999) Chem Rev 99:1787CrossRefGoogle Scholar
  40. 40.
    Maciel GS, Edgardo G (2005) Chem Phys Lett 409:29–33CrossRefGoogle Scholar
  41. 41.
    Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) J Phys Chem 97:10269CrossRefGoogle Scholar
  42. 42.
    Martin F, Zipse H (2004) J Comput Chem 26:97CrossRefGoogle Scholar
  43. 43.
    Chipot C, Maigret B, Rivail J-L, Sheraga HA (1992) J Phys Chem 96:10276CrossRefGoogle Scholar
  44. 44.
    Besler BH, Merz KM Jr, Kollman PA (1990) J Comput Chem 11:431CrossRefGoogle Scholar
  45. 45.
    Cohen MH, Reif F (1975) Solid State Phys 5:321CrossRefGoogle Scholar
  46. 46.
    Lucken EAC (1969) Nuclear quadrupole coupling constant. Academic Press, LondonGoogle Scholar
  47. 47.
    Shukla MK, Mishra SK, Kumar A, Mishra PC (2000) J Comp Chem 21:826–846CrossRefGoogle Scholar
  48. 48.
    Bors W, Michel C, Stettmaier K, Kazazic SP, Klasinc L (2002) Croat Chem Acta 75(4):957–964Google Scholar
  49. 49.
    Tamulis A, Tsifrinovich VI, Tretiak S, Berman GP, Allara DL (2007) Chem Phys Lett 436:144–149CrossRefGoogle Scholar
  50. 50.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  51. 51.
    Weinhold F, Landis CR (2001) Chem Educ Res Pract Eur 2:91–104Google Scholar
  52. 52.
    Weinhold F (1998) Natural bond orbital methods. In: Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA (eds) Encyclopedia of computational chemistry. Wiley, ChichesterGoogle Scholar
  53. 53.
    Weinhold F (2001) NBO 5.0 Program manual. Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, p 53706Google Scholar
  54. 54.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  55. 55.
    Lee C, Yang W, Parr RG (1998) Phys Rev B 37:785CrossRefGoogle Scholar
  56. 56.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich Ś, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Raghavachari JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98 Revision A.7. Gaussian, Inc., PittsburghGoogle Scholar
  57. 57.
    Zhang RB, Huyskensd TZ, Ceulemeans A, Nguyen MT (2005) Chem Phys 316:35–44CrossRefGoogle Scholar
  58. 58.
    Mayer LI (1998) Chem Phys Lett 297:365–373CrossRefGoogle Scholar
  59. 59.
    Jansen HB, Ross P (1969) Chem Phys Lett 3:140CrossRefGoogle Scholar
  60. 60.
    Boys SF, Bernar F (1970) Mol Phys 19:553CrossRefGoogle Scholar
  61. 61.
    Jenson F (2007) Introduction computational chemistry, 2nd edn. Wiley, New YorkGoogle Scholar
  62. 62.
    Culot F, Lievin J (1992) Phys Scr 46:502–517CrossRefGoogle Scholar
  63. 63.
    Wrzalik R, Merkell K, Kocot A (2003) J Mol Model 9:248–258CrossRefGoogle Scholar
  64. 64.
    Breneman CM, Wiberg KB (1990) J Comput Chem 11:361–373CrossRefGoogle Scholar
  65. 65.
    Goodman L, Pophristic V, Weinhold F (1999) Acc Chem Res 32:983–993CrossRefGoogle Scholar
  66. 66.
    Reed AE, Weinhold F (1985) J Am Chem Soc 107:1919–1921CrossRefGoogle Scholar
  67. 67.
    Myers WK, Scholes CP, Tierney DL (2009) J Am Chem Soc 131(30):10421CrossRefGoogle Scholar
  68. 68.
    Latajka Z, Bouteiller Y (1994) J Chem Phys 101:9793–9799CrossRefGoogle Scholar
  69. 69.
    Kim K, Jordan KDJ (1994) Phys Chem 98:10089–10094CrossRefGoogle Scholar
  70. 70.
    Jalbout AF (2002) Acta Chim Slov 49:643–648Google Scholar
  71. 71.
    Emanuele E, Negri F, Orlandi G (2007) Inorg Chim Acta 360:1052–1062CrossRefGoogle Scholar
  72. 72.
    Takahashi O, Yamasaki K, Kohno Y, Ohtaki R, Ueda K, Suezawa H, Umezawa Y, Nishio M (2007) Carbohydrate Research 342:1202–1209CrossRefGoogle Scholar
  73. 73.
    Zhang S, Yang P (2005) J Mol Struct: Theochem 757:77–86CrossRefGoogle Scholar
  74. 74.
    Kolandaivel P, Nirmala V (2004) J Mol Struct 694:33–38CrossRefGoogle Scholar
  75. 75.
    Glendening ED, Faust R, Streitwieser A, Vollhardt KPC, Weinhold F (1993) J Am Chem Soc 115:10952–10957CrossRefGoogle Scholar
  76. 76.
    Bruschi M, Giuffreda MG, Lüthi HP (2002) Chem Eur J 8:4216–4227CrossRefGoogle Scholar
  77. 77.
    Giuffreda MG, Bruschi M, Lüthi HP (2004) Chem Eur J 10:5671–5680CrossRefGoogle Scholar
  78. 78.
    Kjaergaard HG, Henry BR (1994) Mol Phys 83:1099–1116CrossRefGoogle Scholar
  79. 79.
    Rosmusb P, Vladimir G, Tyutere V (2000) Chem Phys Lett 331(2–4):317–322Google Scholar
  80. 80.
    Fan J-F, Wang Q, Qi-Ying XIAO, Graaf V (2002) Chin J Struct Chem 21(2):139–141Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Chemistry, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations