Skip to main content
Log in

Quantum investigation of non-bonded interaction between the B15N15 ring and BH2NBH2 (radical, cation, anion) systems: a nano molecularmotor

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The electromagnetic non-bonded interactions of BH2NBH2 molecule inside the B15N15 ring has been investigated with B3LYP method using EPR-II and EPR-III basis sets. Optimized structures, relative stability, and hyperfine spectroscopic parameters, such as total atomic charges, spin densities, electrical potential, and isotropic Fermi coupling constants of radical, cationic, and anionic forms of BH2NBH2 in different loops and bonds have been calculated. The spectral properties have been contributed to explain the characteristics of hyperfine electronic structure. The calculation for the B15N15–BH2NBH2 system and then for adenine–thymine base pairs coupled with BH2NBH2 molecule inside the B15N15 ring (A–BNB–T) have been done and three quantized rotational frequencies for transitions among cationic, radical, and anionic have been calculated, too. All observed frequencies appeared in the IR rotational region. So, this system can be used for the measurement of rotational spectra related to electrical voltage differences existing in macromolecules such as proteins and DNA and membrane. Extensive calculations have been carried out on the radical, anionic, and cationic forms of BH2NBH2 to obtain data and it has been observed that the radial coordinate of the dipole moment vector (r) as well as the voltage differences (ΔV) and relative energies (ΔE) exhibited Gaussian distribution. We have obtained a relationship between dipole moments and the voltage differences and energies of system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Silberberg MS (2009) Chemistry, 5th edn. McGraw-Hill, New York, p 483

    Google Scholar 

  2. Crane T, Cowan PBP (2000) Phys Rev B 62:11359

    Article  CAS  Google Scholar 

  3. Zedlitz R (1996) J Non-Cryst Solids 198–200:403

    Article  Google Scholar 

  4. Henager CH Jr (1993) Appl Opt 32:91

    Article  CAS  Google Scholar 

  5. Weissmantel S (1999) Diam Relat Mater 8:377

    Article  CAS  Google Scholar 

  6. Leichtfried G (2002) Landolt–Börnstein—Group VIII advanced materials and technologies: powder metallurgy data. Refractory, hard and intermetallic materials. 2A2. Springer, Berlin, pp 118–139

    Google Scholar 

  7. Delhaes P (2001) Graphite and precursors. CRC Press, Boca Raton ISBN 9056992287

    Google Scholar 

  8. Watanabe K, Taniguchi T, Kanda H (2004) Nat Mater 3:404

    Article  CAS  Google Scholar 

  9. Taniguchi T, Watanabe K, Koizumi S, Sakaguchi I, Sekiguchi T, Yamaoka S (2002) Appl Phys Lett 81:22–4145

    Article  Google Scholar 

  10. Locke IW, Darwish AD, Kroto HW, Prassides K, Taylor R, Walton DRM (1994) Chem Phys Lett 225:186

    Article  CAS  Google Scholar 

  11. Behrman EC, Foehrweiser RK, Myers JR, French BR, Zandler ME (1994) Phys Rev A 49:R1543

    Article  CAS  Google Scholar 

  12. Kaxiras E, Jackson K, Pederson MR (1994) Chem Phys Lett 225:448

    Article  CAS  Google Scholar 

  13. Barone V (1996) In: Chong DP (ed) Recent advances in density functional methods, Part I. World Scientific Publ. Co., Singapore

  14. Oku K, Nishiwaki A, Narita I, Gonda M (2003) Chem Phys Lett 380:620–623

    Article  CAS  Google Scholar 

  15. Slanina Z, Sun M-L, Lee SL (1997) NanoStruct Mater 8(5):623

    Article  CAS  Google Scholar 

  16. Fowler PW, Rogers KM, Seifert G, Terrones M, Terrones H (1999) Chem Phys Lett 299:359–367

    Article  CAS  Google Scholar 

  17. Liu Y, Wenli Z, Isaac BB, Boggs JE (2009) J Chem Phys 30:184305

    Article  Google Scholar 

  18. Loiseau A, Willaime F, Demoncy N, Schramchenko N, Hug G (1998) Carbon 36(5–6):743-752, 1598

    Google Scholar 

  19. Sun ML, Slanina Z, Lee SL (1995) Chem Phys Lett 233:279–283

    Article  CAS  Google Scholar 

  20. Seifert G, Fowler RW, Mitchell D, Porezag D, Frauenheim T (1997) Chem Phys Lett 268:352–358

    Article  CAS  Google Scholar 

  21. Takeo O, Masaki K, Hidehiko K, Ichihito N (2001) Int J Inorg Mater 3:597–612

    Article  Google Scholar 

  22. Xu SH, Zhang MY, Zhao YY, Cheng BG, Zhang J, Sun CC (2006) Chem Phys Lett 418:297–301

    Article  CAS  Google Scholar 

  23. Strout DL (2000) J Phys Chem A 104:3364–3366

    Article  CAS  Google Scholar 

  24. Strout DL (2001) J Phys Chem A 105:261–263

    Article  CAS  Google Scholar 

  25. Strout DL (2004) Chem Phys Lett 383:95–98

    Article  CAS  Google Scholar 

  26. Alexandre SS, Mazzoni MSC, Chacham H (1999) Appl Phys Lett 75:61–63

    Article  CAS  Google Scholar 

  27. Alexandre SS, Nunes RW, Chacham H (2002) Phys Rev B 66:085–406

    Article  Google Scholar 

  28. Wu HS, Jiao HJ (2004) Chem Phys Lett 386:369–372

    Article  CAS  Google Scholar 

  29. Wu HS, Xu XH, Strout DL, Jiao HJ (2005) J Mol Model 12:1–8

    Article  Google Scholar 

  30. Rogers KW, Fowler PW, Seifert G (2000) Chem Phys Lett 332:43–50

    Article  CAS  Google Scholar 

  31. Zhu HY, Schmalz TG, Klein DJ (1997) Int J Quant Chem 63:393–401

    Article  CAS  Google Scholar 

  32. Manolopoulos DE, Fowler PW (1991) Chem Phys Lett 187:1–7

    Article  CAS  Google Scholar 

  33. Zope RR, Dunlap BI (2004) Chem Phys Lett 386:403–407

    Article  CAS  Google Scholar 

  34. Knight LB Jr, Hill DW, Kirk TJ, Arrington CA (1992) J Phys Chem 96:555

    Article  CAS  Google Scholar 

  35. Slanina Z, Martin JML, Franqois J-P, Gijbels R (1993) Chem Phys Lett 201:54

    Article  CAS  Google Scholar 

  36. Slanina Z, Martin JML, Franqois JP, Gijbels R (1993) Chem Phys 178:77

    Article  CAS  Google Scholar 

  37. Martin JML, Slanina Z, Franqois JP, Gijbels R (1994) Mol Phys 82:155

    Article  CAS  Google Scholar 

  38. Iijima S, Ichihashi T (1993) Nature 363:603

    Article  CAS  Google Scholar 

  39. Ajayan PM (1999) Chem Rev 99:1787

    Article  CAS  Google Scholar 

  40. Maciel GS, Edgardo G (2005) Chem Phys Lett 409:29–33

    Article  CAS  Google Scholar 

  41. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) J Phys Chem 97:10269

    Article  CAS  Google Scholar 

  42. Martin F, Zipse H (2004) J Comput Chem 26:97

    Article  Google Scholar 

  43. Chipot C, Maigret B, Rivail J-L, Sheraga HA (1992) J Phys Chem 96:10276

    Article  CAS  Google Scholar 

  44. Besler BH, Merz KM Jr, Kollman PA (1990) J Comput Chem 11:431

    Article  CAS  Google Scholar 

  45. Cohen MH, Reif F (1975) Solid State Phys 5:321

    Article  Google Scholar 

  46. Lucken EAC (1969) Nuclear quadrupole coupling constant. Academic Press, London

    Google Scholar 

  47. Shukla MK, Mishra SK, Kumar A, Mishra PC (2000) J Comp Chem 21:826–846

    Article  CAS  Google Scholar 

  48. Bors W, Michel C, Stettmaier K, Kazazic SP, Klasinc L (2002) Croat Chem Acta 75(4):957–964

    CAS  Google Scholar 

  49. Tamulis A, Tsifrinovich VI, Tretiak S, Berman GP, Allara DL (2007) Chem Phys Lett 436:144–149

    Article  CAS  Google Scholar 

  50. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  51. Weinhold F, Landis CR (2001) Chem Educ Res Pract Eur 2:91–104

    CAS  Google Scholar 

  52. Weinhold F (1998) Natural bond orbital methods. In: Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA (eds) Encyclopedia of computational chemistry. Wiley, Chichester

    Google Scholar 

  53. Weinhold F (2001) NBO 5.0 Program manual. Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, p 53706

    Google Scholar 

  54. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  55. Lee C, Yang W, Parr RG (1998) Phys Rev B 37:785

    Article  Google Scholar 

  56. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich Ś, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Raghavachari JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98 Revision A.7. Gaussian, Inc., Pittsburgh

  57. Zhang RB, Huyskensd TZ, Ceulemeans A, Nguyen MT (2005) Chem Phys 316:35–44

    Article  CAS  Google Scholar 

  58. Mayer LI (1998) Chem Phys Lett 297:365–373

    Article  Google Scholar 

  59. Jansen HB, Ross P (1969) Chem Phys Lett 3:140

    Article  CAS  Google Scholar 

  60. Boys SF, Bernar F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  61. Jenson F (2007) Introduction computational chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  62. Culot F, Lievin J (1992) Phys Scr 46:502–517

    Article  CAS  Google Scholar 

  63. Wrzalik R, Merkell K, Kocot A (2003) J Mol Model 9:248–258

    Article  CAS  Google Scholar 

  64. Breneman CM, Wiberg KB (1990) J Comput Chem 11:361–373

    Article  CAS  Google Scholar 

  65. Goodman L, Pophristic V, Weinhold F (1999) Acc Chem Res 32:983–993

    Article  CAS  Google Scholar 

  66. Reed AE, Weinhold F (1985) J Am Chem Soc 107:1919–1921

    Article  CAS  Google Scholar 

  67. Myers WK, Scholes CP, Tierney DL (2009) J Am Chem Soc 131(30):10421

    Article  CAS  Google Scholar 

  68. Latajka Z, Bouteiller Y (1994) J Chem Phys 101:9793–9799

    Article  CAS  Google Scholar 

  69. Kim K, Jordan KDJ (1994) Phys Chem 98:10089–10094

    Article  CAS  Google Scholar 

  70. Jalbout AF (2002) Acta Chim Slov 49:643–648

    CAS  Google Scholar 

  71. Emanuele E, Negri F, Orlandi G (2007) Inorg Chim Acta 360:1052–1062

    Article  CAS  Google Scholar 

  72. Takahashi O, Yamasaki K, Kohno Y, Ohtaki R, Ueda K, Suezawa H, Umezawa Y, Nishio M (2007) Carbohydrate Research 342:1202–1209

    Article  CAS  Google Scholar 

  73. Zhang S, Yang P (2005) J Mol Struct: Theochem 757:77–86

    Article  CAS  Google Scholar 

  74. Kolandaivel P, Nirmala V (2004) J Mol Struct 694:33–38

    Article  CAS  Google Scholar 

  75. Glendening ED, Faust R, Streitwieser A, Vollhardt KPC, Weinhold F (1993) J Am Chem Soc 115:10952–10957

    Article  CAS  Google Scholar 

  76. Bruschi M, Giuffreda MG, Lüthi HP (2002) Chem Eur J 8:4216–4227

    Article  CAS  Google Scholar 

  77. Giuffreda MG, Bruschi M, Lüthi HP (2004) Chem Eur J 10:5671–5680

    Article  CAS  Google Scholar 

  78. Kjaergaard HG, Henry BR (1994) Mol Phys 83:1099–1116

    Article  CAS  Google Scholar 

  79. Rosmusb P, Vladimir G, Tyutere V (2000) Chem Phys Lett 331(2–4):317–322

    Google Scholar 

  80. Fan J-F, Wang Q, Qi-Ying XIAO, Graaf V (2002) Chin J Struct Chem 21(2):139–141

    CAS  Google Scholar 

Download references

Acknowledgment

The portion of this study done in Austin has been supported by grant F-100 from the Welch Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Monajjemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monajjemi, M. Quantum investigation of non-bonded interaction between the B15N15 ring and BH2NBH2 (radical, cation, anion) systems: a nano molecularmotor. Struct Chem 23, 551–580 (2012). https://doi.org/10.1007/s11224-011-9895-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9895-8

Keywords

Navigation