Skip to main content
Log in

Ab initio study of phenyl benzoate: structure, conformational analysis, dipole moment, IR and Raman vibrational spectra

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The molecular structure (bond distances and angles), conformational properties, dipole moment and vibrational spectroscopic data (vibrational frequencies, IR and Raman intensities) of phenyl benzoate were calculated using Hartree–Fock (HF), density functional (DFT), and second order Møller–Plesset perturbation theory (MP2) with basis sets ranging from 6-31G* to 6-311++G**. The theoretical results are discussed mainly in terms of comparisons with available experimental data. For geometric data, good agreement between theory and experiment is obtained for the MP2, B3LYP and B3PW91 levels with basis sets including diffuse functions. The B3LYP/6-31+G* theory level estimates the shape of the experimental functions for phenyl torsion around the Ph–O and Ph–C bonds well, but reproduces the height of the rotational barriers poorly. The B3LYP/6-31+G* harmonic force constants were scaled by applying the scaled quantum mechanical force field (SQM) technique. The calculated vibrational spectra were interpreted and band assignments were reported. They are in excellent agreement with experimental IR and Raman spectra.

Figure Calculated and experimental (GED) potential energy functions for torsional motion of phenyl benzoate relative to the minimum value. a The potential function for torsion about the O3–C4 bond. b The potential function for torsion about the C2–C10 bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3a–b.
Fig. 4a–b.
Fig. 5a–b.

Similar content being viewed by others

References

  1. Bone MF, Price AH, Clark MG, McDonnel DG (1982) Liq Cryst Ordered Fluids 4:799–805

    Google Scholar 

  2. Wrzalik R, Merkel K, Kocot A, Ciepłak B (2002) J Chem Phys 117:4889–4895

    Article  CAS  Google Scholar 

  3. Adams JM, Morsi SE (1976) Acta Crystalogr B32:1345–1347

    Article  CAS  Google Scholar 

  4. Shibakami M, Sekiya A (1995) Acta Crystalogr C51:326-330

    CAS  Google Scholar 

  5. Tsuji T, Takeuchi H, Egawa T, Konaka S (2001) J Am Chem Soc 123:6381–6387

    CAS  PubMed  Google Scholar 

  6. Adam CJ, Clark SJ, Ackland GJ, Crain J (1997) Phys Rev E 55:5641–5649

    CAS  Google Scholar 

  7. LeFevre RJ, Sudaram AJ (1962) J Chem Soc 3904–3915

  8. Bogatyreva IK, Avakyan VG, Khodjaeva VL (1995) Izv Acad Nauk Ser Khim 3:443–447

    Google Scholar 

  9. Emsley JW, Furby MI, De Luca G (1996) Liq Cryst 21:877–883

    CAS  Google Scholar 

  10. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratman RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu C, Liashenko A, Piskorz P, Komaromi, I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Gonzales C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98. Gaussian, Pittsburgh Pa.

  11. Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory, 1st edn. Wiley, New York, pp 20–29, 65–88

  12. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:275–280

    Article  CAS  Google Scholar 

  13. Hohenberg P, Kohn W (1964) Phys Rev B 136:864–871

    Google Scholar 

  14. Kohn W, Sham LJ (1965) Phys Rev A 140:1133–1138

    Google Scholar 

  15. Parr RG, Yang W (1989) Density functional theory of atoms and molecules, 1st edn. Oxford University Press, New York, pp 142–197

  16. Becke AD (1993) J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  17. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  PubMed  Google Scholar 

  18. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  19. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    CAS  Google Scholar 

  20. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  21. Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54:16533–16539

    Article  CAS  Google Scholar 

  22. Pulay P, Fogarasi G, Pongor G, Boggs JE (1979) J Am Chem Soc 101:2550–2560

    CAS  Google Scholar 

  23. Pulay P, Fogarasi G, Pongor G, Boggs JE, Vargha A (1983) J Am Chem Soc 105:7037–7047

    CAS  Google Scholar 

  24. Rauhut G, Pulay P (1995) J Phys Chem 99:3093–3100

    CAS  Google Scholar 

  25. Kozłowski PM, Zgierski MZ, Pulay P (1995) Chem Phys Lett 247:379–385

    Google Scholar 

  26. Merkel K, Wrzalik R, Kocot A (2001) J Mol Struct 563–564:477–490

    Google Scholar 

  27. Kon M, Kurokawa H, Takeuchi H, Konaka SJ (1992) J Mol Struct 268:155–167

    Article  CAS  Google Scholar 

  28. Kiyono H, Tatsunami R, Kurai T, Takeuchi H, Egawa T, Konaka S (1998) J Phys Chem 102:1405–1411

    Article  CAS  Google Scholar 

  29. Sun H (1994) J Comput Chem 15:752–768

    CAS  Google Scholar 

  30. Radom L, Pople JA (1970) J Am Chem Soc 92:4786–4975

    CAS  Google Scholar 

  31. Ortí E, Sánchez-Marín J, Marchán M, Tomás F (1987) J Phys Chem 91:545–551

    Google Scholar 

  32. Meier RJ, Koglin E (2002) Chem Phys Lett 353:239–243

    Article  CAS  Google Scholar 

  33. Kristyán S, Pulay P (1994) Chem Phys Lett 229:175–180

    Article  Google Scholar 

  34. Kurita N, Sekino H (2001) Chem Phys Lett 348:139–146

    Article  CAS  Google Scholar 

  35. Berdikhin AA, Frolova LV, Prangova LS, Vulfson SG (1992) J Gen Chem USSR 62:1921–1926

    Google Scholar 

  36. Irvine PA, Erman B, Flory PJ (1983) J Phys Chem 87:2929–2935

    CAS  Google Scholar 

  37. Prangova LS, Fradkina SP, Vasileva IN (1987) J Gen Chem USSR 57:1656–1667

    Google Scholar 

  38. Lide DR (2001) Handbook of chemistry and physics, 81st edn. CRC Press, New York, pp 9.44–9.50

  39. Bredikhin AA, Kirillovich VA, Vereshchagin AN (1988) Bull Acad Sci USSR Div Chem Sci 37:678–682

    Google Scholar 

  40. Tarasova GV, Khashchina MV, Tyurin SA, Bulgarevich SB, Bogdan IG (1986) Russ J Phys Chem 60:1235–1238

    Google Scholar 

  41. Abboud JLM, Notario R (1999) Pure Appl Chem 7:645–718

    Google Scholar 

  42. Saxena SK, Shukla JP, Saxena MCh (1980) Bull Chem Soc Jpn 53:1731–1735

    Google Scholar 

  43. Bredikhin AA, Kirillovich VA (1988) Bull Acad Sci USSR Div Chem Sci 37:931–934

    Google Scholar 

  44. Kano Y, Minami R, Takahashi H (1980) Bull Chem Soc Jpn 53:642–644

    CAS  Google Scholar 

  45. Gumennyi VI (1987) Chem Heterocycl Compd 23:1288–1292

    Google Scholar 

  46. Miertus S, Scrocco E, Tomasi J (1981) J Chem Phys 55:117–129

    Article  CAS  Google Scholar 

  47. Cammiv R, Tomasi J (1995) J Comput Chem 16:1449–1458

    Google Scholar 

  48. Körner H, Shiota A, Bunning TJ, Ober CK (1996) Science 272:252–255

    Google Scholar 

  49. Sander WW (1989) J Org Chem 54:333–339

    CAS  Google Scholar 

  50. Pulay P, Törok F (1966) Acta Chem Acad Sci Hung 47:273–297

    CAS  Google Scholar 

  51. Wilson EB, Decius JC, Cross PC (1995) Molecular vibrations, 1st edn. McGraw-Hill, New York

Download references

Acknowledgement

This work was partly supported by the Committee for Scientific Research (KBN) under Grant No. 2P03B09817. The authors thank Prof. P. Pulay for the SQM program and Dr. A. Jarzecki for help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Wrzalik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wrzalik, R., Merkel, K. & Kocot, A. Ab initio study of phenyl benzoate: structure, conformational analysis, dipole moment, IR and Raman vibrational spectra. J Mol Model 9, 248–258 (2003). https://doi.org/10.1007/s00894-003-0138-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-003-0138-9

Keywords

Navigation