Skip to main content
Log in

A new photoproduct of 5-methylcytosine and adenine: a theoretical study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Both the cycloaddition mechanism of 5-methylcytosine with adenine and the deamination mechanism of the cycloaddition product have been studied using density functional theory method. The results suggest that the cycloaddition reaction could occur more easily through photochemical reaction pathway than through thermal reaction pathway. The obtained four-member ring structure could be easily transformed to an eight-member ring structure through bond cleavage of C5–C6 (the energy barrier is <2 kcal/mol). Then hydrolytic deamination reaction takes place with water assistance. The hydroxyl group of one water molecule attacks the C 4 atom and the hydrogen atom of another water molecule attacks N 3 atom to form a tetrahedral intermediate. Subsequently, the hydrogen atom of hydroxyl group transfers to N 8 to produce ammonia, and the amino group of the former 5-methylcytosine changes to carboxyl oxygen. Our calculations explain the phenomena that 5-methylcytosine and adenine could obtain the same photoproduct as thymine and adenine from theoretical aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Holman MR, Ito T, Rokita SE (2007) J Am Chem Soc 129:6–7

    Article  CAS  Google Scholar 

  2. Boggio-Pasqua M, Groenhof G, Schäfer LV, Grubmüller H, Robb MA (2007) J Am Chem Soc 129:10996–10997

    Article  CAS  Google Scholar 

  3. Johnson AT, Wiest O (2007) J Phys Chem B 111:14398–14404

    Article  CAS  Google Scholar 

  4. Blancafort L, Migani A (2007) J Am Chem Soc 129:14540–14541

    Article  CAS  Google Scholar 

  5. Durbeej B, Eriksson LA (2002) J Photochem Photobiol A 152:95–101

    Article  CAS  Google Scholar 

  6. Law YK, Azadi J, Respo-Hemández CE, Olmon E, Kohler B (2008) Biophys J 94:3590–3600

    Article  CAS  Google Scholar 

  7. Zhang W, Yuan S, Li A, Dou Y, Zhao J, Fang W (2010) J Phys Chem C 114:5594–5601

    Article  CAS  Google Scholar 

  8. Su DGT, Taylor J-SA, Gross ML (2010) Chem Res Toxicol 23:474–479

    Article  CAS  Google Scholar 

  9. HyperChem™, Hypercube, Inc., Gainesville, FL

  10. Tozer DJ, Handy NC (1998) J Chem Phys 109:10180–10189

    Article  CAS  Google Scholar 

  11. Zhao Y, Truhlar DG (2004) J Phys Chem A 108:6908–6918

    Article  CAS  Google Scholar 

  12. González Moa MJ, Mandado M, Mosquera RA (2007) J Phys Chem A 111:1998–2001

    Article  Google Scholar 

  13. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskortz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision D.01. Gaussian, Inc, Wallingford, CT

    Google Scholar 

  14. Zhu C, Meng FC (2009) Struct Chem 20:685–691

    Article  CAS  Google Scholar 

  15. Zhang A, Yang B, Li Z (2007) J Mol Struct Theochem 819:95–101

    Article  CAS  Google Scholar 

  16. Almatarneh MH, Flinn CG, Poirier RA, Sokalski WA (2006) J Phys Chem A 110:8227–8234

    Article  CAS  Google Scholar 

  17. Zheng HY, Meng FC (2009) Struct Chem 20:943–949

    Article  CAS  Google Scholar 

  18. Labet V, Morell C, Grand A, Toro-Labbé A (2008) J Phys Chem A 112:11487–11494

    Article  CAS  Google Scholar 

  19. Almatarneh MH, Flinn CG, Poirier RA (2008) J Chem Inf Model 48:831–843

    Article  CAS  Google Scholar 

  20. Lindahl T, Nyberg B (1974) Biochemistry 13:3405–3410

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by China State Key Development Plan Project (No. 2010CB735602) and National Key Hi-Tech Innovation Project for R&D of Novel Drugs (No. 2009ZX09301-008-P-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fancui Meng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, F., Wang, H. & Xu, W. A new photoproduct of 5-methylcytosine and adenine: a theoretical study. Struct Chem 22, 951–955 (2011). https://doi.org/10.1007/s11224-011-9783-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9783-2

Keywords

Navigation