Advertisement

Solar Physics

, Volume 285, Issue 1–2, pp 25–70 | Cite as

Solar Orbiter

Exploring the Sun–Heliosphere Connection
  • D. Müller
  • R. G. Marsden
  • O. C. St. Cyr
  • H. R. Gilbert
  • The Solar Orbiter Team
OBSERVATIONS AND MODELLING OF THE INNER HELIOSPHERE

Abstract

The heliosphere represents a uniquely accessible domain of space, where fundamental physical processes common to solar, astrophysical and laboratory plasmas can be studied under conditions impossible to reproduce on Earth and unfeasible to observe from astronomical distances. Solar Orbiter, the first mission of ESA’s Cosmic Vision 2015 – 2025 programme, will address the central question of heliophysics: How does the Sun create and control the heliosphere? In this paper, we present the scientific goals of the mission and provide an overview of the mission implementation.

Keywords

Sun Heliosphere Corona Dynamics Magnetic fields 

Notes

Acknowledgements

Contributions to this paper were provided by the PIs and Co-PIs, the ESA Solar Orbiter Project Team, the NASA Solar Orbiter Collaboration Project Team, E. Marsch (MPS Lindau), M. Velli (JPL/U. Firenze), C. DeForest (SwRI Boulder), D. Hassler (SwRI Boulder) and W. Lewis (SwRI San Antonio). The authors would like to thank the referee, guest editor and journal editors for comments and suggestions, which helped to improve the quality of this work.

References

  1. Acton, L., Tsuneta, S., Ogawara, Y., Bentley, R., Bruner, M., Canfield, R., Culhane, L., Doschek, G., Hiei, E., Hirayama, T.: 1992, The Yohkoh mission for high-energy solar physics. Science 258, 618 – 625. doi: 10.1126/science.258.5082.618. ADSCrossRefGoogle Scholar
  2. Antiochos, S.K., Mikić, Z., Titov, V.S., Lionello, R., Linker, J.A.: 2011, A model for the sources of the slow solar wind. Astrophys. J. 731, 112. doi: 10.1088/0004-637X/731/2/112. ADSCrossRefGoogle Scholar
  3. Antonucci, E., Abbo, L., Dodero, M.A.: 2005, Slow wind and magnetic topology in the solar minimum corona in 1996 – 1997. Astron. Astrophys. 435, 699 – 711. doi: 10.1051/0004-6361:20047126. ADSCrossRefGoogle Scholar
  4. Aschwanden, M.J.: 2006, The localization of particle acceleration sites in solar flares and CMES. Space Sci. Rev. 124, 361 – 372. doi: 10.1007/s11214-006-9095-9. ADSCrossRefGoogle Scholar
  5. Axford, W.I., McKenzie, J.F.: 1992, The origin of high speed solar wind streams. In: Marsch, E., Schwenn, R. (eds.) Solar Wind 7 – Proc. 3rd COSPAR Coll., COSPAR CS-3, Pergamon Press, Oxford, 1 – 5. Google Scholar
  6. Beck, J.G.: 2000, A comparison of differential rotation measurements. Solar Phys. 191, 47 – 70 (Invited Review). ADSCrossRefGoogle Scholar
  7. Benkhoff, J., van Casteren, J., Hayakawa, H., Fujimoto, M., Laakso, H., Novara, M., Ferri, P., Middleton, H.R., Ziethe, R.: 2010, BepiColombo – Comprehensive exploration of Mercury: Mission overview and science goals. Planet. Space Sci. 58, 2 – 20. doi: 10.1016/j.pss.2009.09.020. ADSCrossRefGoogle Scholar
  8. Borovsky, J.E.: 2008, Flux tube texture of the solar wind: Strands of the magnetic carpet at 1 AU? J. Geophys. Res. 113, 8110. doi: 10.1029/2007JA012684. CrossRefGoogle Scholar
  9. Breech, B., Matthaeus, W.H., Minnie, J., Bieber, J.W., Oughton, S., Smith, C.W., Isenberg, P.A.: 2008, Turbulence transport throughout the heliosphere. J. Geophys. Res. 113, 8105. doi: 10.1029/2007JA012711. CrossRefGoogle Scholar
  10. Brun, A.S., Miesch, M.S., Toomre, J.: 2004, Global-scale turbulent convection and magnetic dynamo action in the solar envelope. Astrophys. J. 614, 1073 – 1098. doi: 10.1086/423835. ADSCrossRefGoogle Scholar
  11. Bruno, R., Carbone, V., Veltri, P., Pietropaolo, E., Bavassano, B.: 2001, Identifying intermittency events in the solar wind. Planet. Space Sci. 49, 1201 – 1210. doi: 10.1016/S0032-0633(01)00061-7. ADSCrossRefGoogle Scholar
  12. Cargill, P.J., Vlahos, L., Turkmani, R., Galsgaard, K., Isliker, H.: 2006, Particle acceleration in a three-dimensional model of reconnecting coronal magnetic fields. Space Sci. Rev. 124, 249 – 259. doi: 10.1007/s11214-006-9108-8. ADSCrossRefGoogle Scholar
  13. Cirtain, J.W., Golub, L., Lundquist, L., van Ballegooijen, A., Savcheva, A., Shimojo, M., DeLuca, E., Tsuneta, S., Sakao, T., Reeves, K., Weber, M., Kano, R., Narukage, N., Shibasaki, K.: 2007, Evidence for Alfvén waves in solar X-ray jets. Science 318, 1580 – 1582. doi: 10.1126/science.1147050. ADSCrossRefGoogle Scholar
  14. Cohen, C.M.S., Mewaldt, R.A., Leske, R.A., Cummings, A.C., Stone, E.C., Wiedenbeck, M.E., von Rosenvinge, T.T., Mason, G.M.: 2007, Solar elemental composition based on studies of solar energetic particles. Space Sci. Rev. 130, 183 – 194. doi: 10.1007/s11214-007-9218-y. ADSCrossRefGoogle Scholar
  15. Corbard, T.: 1998, Inversion des mesures heliosismologiques: la rotation interne du soleil. PhD thesis, Université de Nice. Google Scholar
  16. Cranmer, S.R., van Ballegooijen, A.A., Edgar, R.J.: 2007, Self-consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence. Astrophys. J. Suppl. Ser. 171, 520 – 551. doi: 10.1086/518001. ADSCrossRefGoogle Scholar
  17. De Pontieu, B., McIntosh, S.W., Hansteen, V.H., Schrijver, C.J.: 2009, Observing the roots of solar coronal heating – in the chromosphere. Astrophys. J. Lett. 701, L1 – L6. doi: 10.1088/0004-637X/701/1/L1. ADSCrossRefGoogle Scholar
  18. De Pontieu, B., McIntosh, S.W., Carlsson, M., Hansteen, V.H., Tarbell, T.D., Boerner, P., Martinez-Sykora, J., Schrijver, C.J., Title, A.M.: 2011, The origins of hot plasma in the solar corona. Science 331, 55 – 58. doi: 10.1126/science.1197738. ADSCrossRefGoogle Scholar
  19. Desai, M.I., Mason, G.M., Mazur, J.E., Dwyer, J.R.: 2006, The seed population for energetic particles accelerated by CME-driven shocks. Space Sci. Rev. 124, 261 – 275. doi: 10.1007/s11214-006-9109-7. ADSCrossRefGoogle Scholar
  20. Dikpati, M., Charbonneau, P.: 1999, A Babcock–Leighton flux transport dynamo with solar-like differential rotation. Astrophys. J. 518, 508 – 520. doi: 10.1086/307269. ADSCrossRefGoogle Scholar
  21. Dikpati, M., Gilman, P.A.: 2008, Global solar dynamo models: Simulations and predictions. J. Astrophys. Astron. 29, 29 – 39. doi: 10.1007/s12036-008-0004-3. ADSCrossRefGoogle Scholar
  22. Dodero, M.A., Antonucci, E., Giordano, S., Martin, R.: 1998, Solar wind velocity and anisotropic coronal kinetic temperature measured with the O VI doublet ratio. Solar Phys. 183, 77 – 90. ADSCrossRefGoogle Scholar
  23. Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: an overview. Solar Phys. 162, 1 – 37. doi: 10.1007/BF00733425. ADSCrossRefGoogle Scholar
  24. Drake, J.F., Cassak, P.A., Shay, M.A., Swisdak, M., Quataert, E.: 2009, A magnetic reconnection mechanism for ion acceleration and abundance enhancements in impulsive flares. Astrophys. J. Lett. 700, L16 – L20. doi: 10.1088/0004-637X/700/1/L16. ADSCrossRefGoogle Scholar
  25. Emslie, A.G., Kucharek, H., Dennis, B.R., Gopalswamy, N., Holman, G.D., Share, G.H., Vourlidas, A., Forbes, T.G., Gallagher, P.T., Mason, G.M., Metcalf, T.R., Mewaldt, R.A., Murphy, R.J., Schwartz, R.A., Zurbuchen, T.H.: 2004, Energy partition in two solar flare/CME events. J. Geophys. Res. 109, 10104. doi: 10.1029/2004JA010571. CrossRefGoogle Scholar
  26. Fisk, L.A.: 2003, Acceleration of the solar wind as a result of the reconnection of open magnetic flux with coronal loops. J. Geophys. Res. 108, 1157. doi: 10.1029/2002JA009284. CrossRefGoogle Scholar
  27. Fisk, L.A., Gloeckler, G.: 2007, Acceleration and composition of solar wind suprathermal tails. Space Sci. Rev. 130, 153 – 160. doi: 10.1007/s11214-007-9180-8. ADSCrossRefGoogle Scholar
  28. Fisk, L.A., Schwadron, N.A.: 2001, The behavior of the open magnetic field of the Sun. Astrophys. J. 560, 425 – 438. doi: 10.1086/322503. ADSCrossRefGoogle Scholar
  29. Fisk, L.A., Zhao, L.: 2009, The heliospheric magnetic field and the solar wind during the solar cycle. In: Gopalswamy, N., Webb, D.F. (eds.) IAU Symposium 257, 109 – 120. doi: 10.1017/S1743921309029160. Google Scholar
  30. Fisk, L.A., Zurbuchen, T.H.: 2006, Distribution and properties of open magnetic flux outside of coronal holes. J. Geophys. Res. 111, 9115. doi: 10.1029/2005JA011575. CrossRefGoogle Scholar
  31. Fisk, L.A., Schwadron, N.A., Zurbuchen, T.H.: 1998, On the slow solar wind. Space Sci. Rev. 86, 51 – 60. doi: 10.1023/A:1005015527146. ADSCrossRefGoogle Scholar
  32. Fisk, L.A., Schwadron, N.A., Zurbuchen, T.H.: 1999, Acceleration of the fast solar wind by the emergence of new magnetic flux. J. Geophys. Res. 104, 19765 – 19772. doi: 10.1029/1999JA900256. ADSCrossRefGoogle Scholar
  33. Geiss, J.: 1982, Processes affecting abundances in the solar wind. Space Sci. Rev. 33, 201 – 217. doi: 10.1007/BF00213254. ADSCrossRefGoogle Scholar
  34. Geiss, J., Gloeckler, G., von Steiger, R., Balsiger, H., Fisk, L.A., Galvin, A.B., Ipavich, F.M., Livi, S., McKenzie, J.F., Ogilvie, K.W., Wilken, B.: 1995, The southern high-speed stream: Results from the SWICS instrument on Ulysses. Science 268, 1033 – 1036. doi: 10.1126/science.7754380. ADSCrossRefGoogle Scholar
  35. Getman, K.V., Feigelson, E.D., Broos, P.S., Micela, G., Garmire, G.P.: 2008, X-ray flares in Orion young stars. I. Flare characteristics. Astrophys. J. 688, 418 – 436. doi: 10.1086/592033. ADSCrossRefGoogle Scholar
  36. Giacalone, J., Kóta, J.: 2006, Acceleration of solar-energetic particles by shocks. Space Sci. Rev. 124, 277 – 288. doi: 10.1007/s11214-006-9110-1. ADSCrossRefGoogle Scholar
  37. Gizon, L., Birch, A.C.: 2005, Local helioseismology. Living Rev. Solar Phys. 2, 6. ADSCrossRefGoogle Scholar
  38. Gopalswamy, N.: 2006, Properties of interplanetary coronal mass ejections. Space Sci. Rev. 124, 145 – 168. doi: 10.1007/s11214-006-9102-1. ADSCrossRefGoogle Scholar
  39. Gopalswamy, N., Yashiro, S., Kaiser, M.L., Howard, R.A., Bougeret, J.-L.: 2001, Radio signatures of coronal mass ejection interaction: Coronal mass ejection cannibalism? Astrophys. J. Lett. 548, L91 – L94. doi: 10.1086/318939. ADSCrossRefGoogle Scholar
  40. Gopalswamy, N., Yashiro, S., Kaiser, M.L., Howard, R.A., Bougeret, J.-L.: 2002, Interplanetary radio emission due to interaction between two coronal mass ejections. Geophys. Res. Lett. 29(8), 080000-1. doi: 10.1029/2001GL013606. CrossRefGoogle Scholar
  41. Gopalswamy, N., Yashiro, S., Xie, H., Akiyama, S., Aguilar-Rodriguez, E., Kaiser, M.L., Howard, R.A., Bougeret, J.-L.: 2008, Radio-quiet fast and wide coronal mass ejections. Astrophys. J. 674, 560 – 569. doi: 10.1086/524765. ADSCrossRefGoogle Scholar
  42. Handy, B.N., Acton, L.W., Kankelborg, C.C., Wolfson, C.J., Akin, D.J., Bruner, M.E., Caravalho, R., Catura, R.C., Chevalier, R., Duncan, D.W., Edwards, C.G., Feinstein, C.N., Freeland, S.L., Friedlaender, F.M., Hoffmann, C.H., Hurlburt, N.E., Jurcevich, B.K., Katz, N.L., Kelly, G.A., Lemen, J.R., Levay, M., Lindgren, R.W., Mathur, D.P., Meyer, S.B., Morrison, S.J., Morrison, M.D., Nightingale, R.W., Pope, T.P., Rehse, R.A., Schrijver, C.J., Shine, R.A., Shing, L., Strong, K.T., Tarbell, T.D., Title, A.M., Torgerson, D.D., Golub, L., Bookbinder, J.A., Caldwell, D., Cheimets, P.N., Davis, W.N., Deluca, E.E., McMullen, R.A., Warren, H.P., Amato, D., Fisher, R., Maldonado, H., Parkinson, C.: 1999, The transition region and coronal explorer. Solar Phys. 187, 229 – 260. doi: 10.1023/A:1005166902804. ADSCrossRefGoogle Scholar
  43. Hansteen, V.H., Leer, E.: 1995, Coronal heating, densities, and temperatures and solar wind acceleration. J. Geophys. Res. 100, 21577 – 21594. doi: 10.1029/95JA02300. ADSCrossRefGoogle Scholar
  44. Harrison, R.A., Davies, J.A., Rouillard, A.P., Davis, C.J., Eyles, C.J., Bewsher, D., Crothers, S.R., Howard, R.A., Sheeley, N.R., Vourlidas, A., Webb, D.F., Brown, D.S., Dorrian, G.D.: 2009, Two years of the STEREO heliospheric imagers. Invited review. Solar Phys. 256, 219 – 237. doi: 10.1007/s11207-009-9352-7. ADSCrossRefGoogle Scholar
  45. Harvey, J.W., Branston, D., Henney, C.J., Keller, C.U., SOLIS and GONG Teams: 2007, Seething horizontal magnetic fields in the quiet solar photosphere. Astrophys. J. Lett. 659, L177 – L180. doi: 10.1086/518036. ADSCrossRefGoogle Scholar
  46. Horbury, T.S., Forman, M., Oughton, S.: 2008, Anisotropic scaling of magnetohydrodynamic turbulence. Phys. Rev. Lett. 101(17), 175005. doi: 10.1103/PhysRevLett.101.175005. ADSCrossRefGoogle Scholar
  47. Howe, R., Komm, R., Hill, F., Ulrich, R., Haber, D.A., Hindman, B.W., Schou, J., Thompson, M.J.: 2006, Large-scale zonal flows near the solar surface. Solar Phys. 235, 1 – 15. doi: 10.1007/s11207-006-0117-2. ADSCrossRefGoogle Scholar
  48. Jackiewicz, J., Gizon, L., Birch, A.C.: 2008, High-resolution mapping of flows in the solar interior: Fully consistent OLA inversion of helioseismic travel times. Solar Phys. 251, 381 – 415. doi: 10.1007/s11207-008-9158-z. ADSCrossRefGoogle Scholar
  49. Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: An introduction. Space Sci. Rev. 136, 5 – 16. doi: 10.1007/s11214-007-9277-0. ADSCrossRefGoogle Scholar
  50. Kilpua, E.K.J., Jian, L.K., Li, Y., Luhmann, J.G., Russell, C.T.: 2011, Multipoint ICME encounters: Pre-STEREO and STEREO observations. J. Atmos. Solar-Terr. Phys. 73, 1228 – 1241. doi: 10.1016/j.jastp.2010.10.012. ADSCrossRefGoogle Scholar
  51. Klecker, B., Möbius, E., Popecki, M.A.: 2006, Solar energetic particle charge states: An overview. Space Sci. Rev. 124, 289 – 301. doi: 10.1007/s11214-006-9111-0. ADSCrossRefGoogle Scholar
  52. Klimchuk, J.A.: 2006, On solving the coronal heating problem. Solar Phys. 234, 41 – 77. doi: 10.1007/s11207-006-0055-z. ADSCrossRefGoogle Scholar
  53. Kohl, J.L., Noci, G., Antonucci, E., Tondello, G., Huber, M.C.E., Gardner, L.D., Nicolosi, P., Strachan, L., Fineschi, S., Raymond, J.C., Romoli, M., Spadaro, D., Panasyuk, A., Siegmund, O.H.W., Benna, C., Ciaravella, A., Cranmer, S.R., Giordano, S., Karovska, M., Martin, R., Michels, J., Modigliani, A., Naletto, G., Pernechele, C., Poletto, G., Smith, P.L.: 1997, First results from the SOHO ultraviolet coronagraph spectrometer. Solar Phys. 175, 613 – 644. doi: 10.1023/A:1004903206467. ADSCrossRefGoogle Scholar
  54. Kohl, J.L., Noci, G., Antonucci, E., Tondello, G., Huber, M.C.E., Cranmer, S.R., Strachan, L., Panasyuk, A.V., Gardner, L.D., Romoli, M., Fineschi, S., Dobrzycka, D., Raymond, J.C., Nicolosi, P., Siegmund, O.H.W., Spadaro, D., Benna, C., Ciaravella, A., Giordano, S., Habbal, S.R., Karovska, M., Li, X., Martin, R., Michels, J.G., Modigliani, A., Naletto, G., O’Neal, R.H., Pernechele, C., Poletto, G., Smith, P.L., Suleiman, R.M.: 1998, UVCS/SOHO empirical determinations of anisotropic velocity distributions in the solar corona. Astrophys. J. Lett. 501, L127. doi: 10.1086/311434. ADSCrossRefGoogle Scholar
  55. Kohl, J.L., Noci, G., Cranmer, S.R., Raymond, J.C.: 2006, Ultraviolet spectroscopy of the extended solar corona. Astron. Astrophys. Rev. 13, 31 – 157. doi: 10.1007/s00159-005-0026-7. ADSCrossRefGoogle Scholar
  56. Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T., Minesugi, K., Ohnishi, A., Yamada, T., Tsuneta, S., Hara, H., Ichimoto, K., Suematsu, Y., Shimojo, M., Watanabe, T., Shimada, S., Davis, J.M., Hill, L.D., Owens, J.K., Title, A.M., Culhane, J.L., Harra, L.K., Doschek, G.A., Golub, L.: 2007, The Hinode (Solar-B) mission: An overview. Solar Phys. 243, 3 – 17. doi: 10.1007/s11207-007-9014-6. ADSCrossRefGoogle Scholar
  57. Lamb, D.A., DeForest, C.E., Hagenaar, H.J., Parnell, C.E., Welsch, B.T.: 2008, Solar magnetic tracking. II. The apparent unipolar origin of quiet-Sun flux. Astrophys. J. 674, 520 – 529. doi: 10.1086/524372. ADSCrossRefGoogle Scholar
  58. Lamb, D.A., DeForest, C.E., Hagenaar, H.J., Parnell, C.E., Welsch, B.T.: 2010, Solar magnetic tracking. III. Apparent unipolar flux emergence in high-resolution observations. Astrophys. J. 720, 1405 – 1416. doi: 10.1088/0004-637X/720/2/1405. ADSCrossRefGoogle Scholar
  59. Lee, M.A.: 2007, What determines the composition of SEPs in gradual events? Space Sci. Rev. 130, 221 – 229. doi: 10.1007/s11214-007-9188-0. ADSCrossRefGoogle Scholar
  60. Li, X., Habbal, S.R., Kohl, J., Noci, G.: 1998, The effect of temperature anisotropy on observations of Doppler dimming and pumping in the inner corona. Astrophys. J. Lett. 501, L133. doi: 10.1086/311428. ADSCrossRefGoogle Scholar
  61. Lin, R.P.: 2006, Particle acceleration by the Sun: Electrons, hard X-rays/gamma-rays. Space Sci. Rev. 124, 233 – 248. doi: 10.1007/s11214-006-9107-9. ADSCrossRefGoogle Scholar
  62. Lin, J., Forbes, T.G.: 2000, Effects of reconnection on the coronal mass ejection process. J. Geophys. Res. 105, 2375 – 2392. doi: 10.1029/1999JA900477. ADSCrossRefGoogle Scholar
  63. Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., Csillaghy, A., Lewis, M., Madden, N., van Beek, H.F., Appleby, M., Raudorf, T., McTiernan, J., Ramaty, R., Schmahl, E., Schwartz, R., Krucker, S., Abiad, R., Quinn, T., Berg, P., Hashii, M., Sterling, R., Jackson, R., Pratt, R., Campbell, R.D., Malone, D., Landis, D., Barrington-Leigh, C.P., Slassi-Sennou, S., Cork, C., Clark, D., Amato, D., Orwig, L., Boyle, R., Banks, I.S., Shirey, K., Tolbert, A.K., Zarro, D., Snow, F., Thomsen, K., Henneck, R., McHedlishvili, A., Ming, P., Fivian, M., Jordan, J., Wanner, R., Crubb, J., Preble, J., Matranga, M., Benz, A., Hudson, H., Canfield, R.C., Holman, G.D., Crannell, C., Kosugi, T., Emslie, A.G., Vilmer, N., Brown, J.C., Johns-Krull, C., Aschwanden, M., Metcalf, T., Conway, A.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3 – 32. doi: 10.1023/A:1022428818870. ADSCrossRefGoogle Scholar
  64. Lites, B., Socas-Navarro, H., Kubo, M., Berger, T., Frank, Z., Shine, R.A., Tarbell, T.D., Title, A.M., Ichimoto, K., Katsukawa, Y., Tsuneta, S., Suematsu, Y., Shimizu, T.: 2007, Hinode observations of horizontal quiet Sun magnetic flux and the “hidden turbulent magnetic flux”. Publ. Astron. Soc. Japan 59, 571. Google Scholar
  65. Liu, R., Liu, C., Park, S.-H., Wang, H.: 2010, Gradual inflation of active-region coronal arcades building up to coronal mass ejections. Astrophys. J. 723, 229 – 240. doi: 10.1088/0004-637X/723/1/229. ADSCrossRefGoogle Scholar
  66. Lockwood, M., Stamper, R., Wild, M.N.: 1999, A doubling of the Sun’s coronal magnetic field during the past 100 years. Nature 399, 437 – 439. doi: 10.1038/20867. ADSCrossRefGoogle Scholar
  67. Lugaz, N., Manchester, W.B. IV, Gombosi, T.I.: 2005, Numerical simulation of the interaction of two coronal mass ejections from Sun to Earth. Astrophys. J. 634, 651 – 662. doi: 10.1086/491782. ADSCrossRefGoogle Scholar
  68. Lynch, B.J., Antiochos, S.K., MacNeice, P.J., Zurbuchen, T.H., Fisk, L.A.: 2004, Observable properties of the breakout model for coronal mass ejections. Astrophys. J. 617, 589 – 599. doi: 10.1086/424564. ADSCrossRefGoogle Scholar
  69. Makarov, V.I., Tlatov, A.G., Sivaraman, K.R.: 2003, Duration of polar activity cycles and their relation to sunspot activity. Solar Phys. 214, 41 – 54. ADSCrossRefGoogle Scholar
  70. Mann, G., Klassen, A., Aurass, H., Classen, H.-T.: 2003, Formation and development of shock waves in the solar corona and the near-Sun interplanetary space. Astron. Astrophys. 400, 329 – 336. doi: 10.1051/0004-6361:20021593. ADSCrossRefGoogle Scholar
  71. Marino, R., Sorriso-Valvo, L., Carbone, V., Noullez, A., Bruno, R., Bavassano, B.: 2008, Heating the solar wind by a magnetohydrodynamic turbulent energy cascade. Astrophys. J. Lett. 677, L71 – L74. doi: 10.1086/587957. ADSCrossRefGoogle Scholar
  72. Marsch, E.: 2006, Kinetic physics of the solar corona and solar wind. Living Rev. Solar Phys. 3, 1. ADSCrossRefGoogle Scholar
  73. Marsch, E., Zhou, G.-Q., He, J.-S., Tu, C.-Y.: 2006, Magnetic structure of the solar transition region as observed in various ultraviolet lines emitted at different temperatures. Astron. Astrophys. 457, 699 – 706. doi: 10.1051/0004-6361:20065665. ADSCrossRefGoogle Scholar
  74. Marsden, R.G., Müller, D.: 2011, Solar Orbiter definition study report, ESA/SRE(2011)14, http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=48985.
  75. Martínez Pillet, V.: 2007, Instrumental approaches to magnetic and velocity measurements in and out of the ecliptic plane. In: Marsch, E., Tsinganos, K., Marsden, R., Conroy, L. (eds.) Proceedings of the 2nd Solar Orbiter Workshop SP-641, ESA, Noordwijk, 1 – 6. Google Scholar
  76. Mason, G.M.: 2007, 3He-rich solar energetic particle events. Space Sci. Rev. 130, 231 – 242. doi: 10.1007/s11214-007-9156-8. ADSCrossRefGoogle Scholar
  77. Matteini, L., Landi, S., Hellinger, P., Pantellini, F., Maksimovic, M., Velli, M., Goldstein, B.E., Marsch, E.: 2007, Evolution of the solar wind proton temperature anisotropy from 0.3 to 2.5 AU. Geophys. Res. Lett. 34, 20105. doi: 10.1029/2007GL030920. ADSCrossRefGoogle Scholar
  78. McComas, D.J., Ebert, R.W., Elliott, H.A., Goldstein, B.E., Gosling, J.T., Schwadron, N.A., Skoug, R.M.: 2008, Weaker solar wind from the polar coronal holes and the whole Sun. Geophys. Res. Lett. 35, 18103. doi: 10.1029/2008GL034896. ADSCrossRefGoogle Scholar
  79. McIntosh, S.W., Davey, A.R., Hassler, D.M.: 2006, Simple magnetic flux balance as an indicator of Ne VIII Doppler velocity partitioning in an equatorial coronal hole. Astrophys. J. Lett. 644, L87 – L91. doi: 10.1086/505488. ADSCrossRefGoogle Scholar
  80. Mewaldt, R.A.: 2006, Solar energetic particle composition, energy spectra, and space weather. Space Sci. Rev. 124, 303 – 316. doi: 10.1007/s11214-006-9091-0. ADSCrossRefGoogle Scholar
  81. Mewaldt, R.A., Cohen, C.M.S., Mason, G.M., Cummings, A.C., Desai, M.I., Leske, R.A., Raines, J., Stone, E.C., Wiedenbeck, M.E., von Rosenvinge, T.T., Zurbuchen, T.H.: 2007, On the differences in composition between solar energetic particles and solar wind. Space Sci. Rev. 130, 207 – 219. doi: 10.1007/s11214-007-9187-1. ADSCrossRefGoogle Scholar
  82. Neugebauer, M., Goldstein, B.E., McComas, D.J., Suess, S.T., Balogh, A.: 1995, Ulysses observations of microstreams in the solar wind from coronal holes. J. Geophys. Res. 100, 23389 – 23396. doi: 10.1029/95JA02723. ADSCrossRefGoogle Scholar
  83. Ontiveros, V., Vourlidas, A.: 2009, Quantitative measurements of coronal mass ejection-driven shocks from LASCO observations. Astrophys. J. 693, 267 – 275. doi: 10.1088/0004-637X/693/1/267. ADSCrossRefGoogle Scholar
  84. Owens, M.J., Crooker, N.U.: 2006, Coronal mass ejections and magnetic flux buildup in the heliosphere. J. Geophys. Res. 111, 10104. doi: 10.1029/2006JA011641. CrossRefGoogle Scholar
  85. Owens, M.J., Crooker, N.U., Schwadron, N.A., Horbury, T.S., Yashiro, S., Xie, H., St. Cyr, O.C., Gopalswamy, N.: 2008, Conservation of open solar magnetic flux and the floor in the heliospheric magnetic field. Geophys. Res. Lett. 35, 20108. doi: 10.1029/2008GL035813. ADSCrossRefGoogle Scholar
  86. Parnell, C.E., DeForest, C.E., Hagenaar, H.J., Johnston, B.A., Lamb, D.A., Welsch, B.T.: 2009, A power-law distribution of solar magnetic fields over more than five decades in flux. Astrophys. J. 698, 75 – 82. doi: 10.1088/0004-637X/698/1/75. ADSCrossRefGoogle Scholar
  87. Patsourakos, S., Vourlidas, A.: 2009, “Extreme ultraviolet waves” are waves: First quadrature observations of an extreme ultraviolet wave from STEREO. Astrophys. J. Lett. 700, L182 – L186. doi: 10.1088/0004-637X/700/2/L182. ADSCrossRefGoogle Scholar
  88. Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3 – 15. doi: 10.1007/s11207-011-9841-3. ADSCrossRefGoogle Scholar
  89. Pietarila Graham, J., Danilovic, S., Schüssler, M.: 2009, Turbulent magnetic fields in the quiet Sun: Implications of Hinode observations and small-scale dynamo simulations. Astrophys. J. 693, 1728 – 1735. doi: 10.1088/0004-637X/693/2/1728. ADSCrossRefGoogle Scholar
  90. Porsche, H.: 1977, General aspects of the mission Helios 1 and 2. Introduction to a special issue on initial scientific results of the Helios mission. J. Geophys. 42, 551 – 559. Google Scholar
  91. Reale, F.: 2010, Coronal loops: Observations and modeling of confined plasma. Living Rev. Solar Phys. 7, 5. ADSCrossRefGoogle Scholar
  92. Richardson, I.G., Cane, H.V.: 2004, The fraction of interplanetary coronal mass ejections that are magnetic clouds: Evidence for a solar cycle variation. Geophys. Res. Lett. 31, 18804. doi: 10.1029/2004GL020958. ADSCrossRefGoogle Scholar
  93. Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996 – 2009): Catalog and summary of properties. Solar Phys. 264, 189 – 237. doi: 10.1007/s11207-010-9568-6. ADSCrossRefGoogle Scholar
  94. Roth, M.: 2007, In: Kneer, F., Puschmann, K.G., Wittmann, A.D. (eds.) Modern Solar Facilities – Advanced Solar Science, Proceedings of a Workshop Held at Göttingen, 27 – 29 September 2006, Universitätsverlag Göttingen, Göttingen. ISBN 9781931968782. Google Scholar
  95. Rouillard, A.P., Lockwood, M., Finch, I.: 2007, Centennial changes in the solar wind speed and in the open solar flux. J. Geophys. Res. 112, 5103. doi: 10.1029/2006JA012130. CrossRefGoogle Scholar
  96. Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., et al.: 1995, The Solar Oscillations Investigation – Michelson Doppler imager. Solar Phys. 162, 129 – 188. doi: 10.1007/BF00733429 ADSCrossRefGoogle Scholar
  97. Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., et al.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229 – 259. doi: 10.1007/s11207-011-9842-2. ADSCrossRefGoogle Scholar
  98. Schrijver, C.J., Title, A.M., van Ballegooijen, A.A., Hagenaar, H.J., Shine, R.A.: 1997, Sustaining the quiet photospheric network: The balance of flux emergence, fragmentation, merging, and cancellation. Astrophys. J. 487, 424. doi: 10.1086/304581. ADSCrossRefGoogle Scholar
  99. Schwadron, N.A., McComas, D.J.: 2003, Solar wind scaling law. Astrophys. J. 599, 1395 – 1403. doi: 10.1086/379541. ADSCrossRefGoogle Scholar
  100. Schwadron, N.A., McComas, D.J.: 2008, The solar wind power from magnetic flux. Astrophys. J. Lett. 686, L33 – L36. doi: 10.1086/592877. ADSCrossRefGoogle Scholar
  101. Schwenn, R., Marsch, E.: 1990, Physics of the Inner Heliosphere I. Large-Scale Phenomena, Physics and Chemistry in Space 20, Springer, Berlin. CrossRefGoogle Scholar
  102. Schwenn, R., Marsch, E.: 1991, Physics of the Inner Heliosphere II. Particles, Waves and Turbulence, Physics and Chemistry in Space 21, Springer, Berlin. CrossRefGoogle Scholar
  103. Sheeley, N.R. Jr.: 1991, Polar faculae – 1906 – 1990. Astrophys. J. 374, 386 – 389. doi: 10.1086/170129. ADSCrossRefGoogle Scholar
  104. Smith, E.J., Jokipii, J.R., Kóta, J., Lepping, R.P., Szabo, A.: 2000, Evidence of a north-south asymmetry in the heliosphere associated with a southward displacement of the heliospheric current sheet. Astrophys. J. 533, 1084 – 1089. doi: 10.1086/308685. ADSCrossRefGoogle Scholar
  105. Smith, C.W., Mullan, D.J., Ness, N.F., Skoug, R.M., Steinberg, J.: 2001, Day the solar wind almost disappeared: Magnetic field fluctuations, wave refraction and dissipation. J. Geophys. Res. 106, 18625 – 18634. doi: 10.1029/2001JA000022. ADSCrossRefGoogle Scholar
  106. Stone, E.C.: 1977, The Voyager missions to the outer system. Space Sci. Rev. 21, 75. doi: 10.1007/BF00200845. ADSGoogle Scholar
  107. Telloni, D., Antonucci, E., Dodero, M.A.: 2007, Oxygen temperature anisotropy and solar wind heating above coronal holes out to 5 R Sun. Astron. Astrophys. 476, 1341 – 1346. doi: 10.1051/0004-6361:20077660. ADSCrossRefGoogle Scholar
  108. Thieme, K.M., Marsch, E., Schwenn, R.: 1990, Spatial structures in high-speed streams as signatures of fine structures in coronal holes. Ann. Geophys. 8, 713 – 723. ADSGoogle Scholar
  109. Thompson, M.J., Christensen-Dalsgaard, J., Miesch, M.S., Toomre, J.: 2003, The internal rotation of the Sun. Annu. Rev. Astron. Astrophys. 41, 599 – 643. doi: 10.1146/annurev.astro.41.011802.094848. ADSCrossRefGoogle Scholar
  110. Tsuneta, S., Ichimoto, K., Katsukawa, Y., Lites, B.W., Matsuzaki, K., Nagata, S., Orozco Suárez, D., Shimizu, T., Shimojo, M., Shine, R.A., Suematsu, Y., Suzuki, T.K., Tarbell, T.D., Title, A.M.: 2008a, The magnetic landscape of the Sun’s polar region. Astrophys. J. 688, 1374 – 1381. doi: 10.1086/592226. ADSCrossRefGoogle Scholar
  111. Tsuneta, S., Ichimoto, K., Katsukawa, Y., Nagata, S., Otsubo, M., Shimizu, T., et al.: 2008b, The Solar Optical Telescope for the Hinode mission: An overview. Solar Phys. 249, 167 – 196. doi: 10.1007/s11207-008-9174-z ADSCrossRefGoogle Scholar
  112. Tu, C.-Y., Marsch, E.: 1990, Evidence for a ‘background’ spectrum of solar wind turbulence in the inner heliosphere. J. Geophys. Res. 95, 4337 – 4341. doi: 10.1029/JA095iA04p04337. ADSCrossRefGoogle Scholar
  113. Tu, C.-Y., Zhou, C., Marsch, E., Xia, L.-D., Zhao, L., Wang, J.-X., Wilhelm, K.: 2005, Solar wind origin in coronal funnels. Science 308, 519 – 523. doi: 10.1126/science.1109447. ADSCrossRefGoogle Scholar
  114. Tylka, A.J., Cohen, C.M.S., Dietrich, W.F., Lee, M.A., Maclennan, C.G., Mewaldt, R.A., Ng, C.K., Reames, D.V.: 2006, A comparative study of ion characteristics in the large gradual solar energetic particle events of 2002 April 21 and 2002 August 24. Astrophys. J. Suppl. Ser. 164, 536 – 551. doi: 10.1086/503203. ADSCrossRefGoogle Scholar
  115. Van Hollebeke, M.A.I., Ma Sung, L.S., McDonald, F.B.: 1975, The variation of solar proton energy spectra and size distribution with heliolongitude. Solar Phys. 41, 189 – 223. doi: 10.1007/BF00152967. ADSCrossRefGoogle Scholar
  116. Vögler, A., Schüssler, M.: 2007, A solar surface dynamo. Astron. Astrophys. 465, L43 – L46. doi: 10.1051/0004-6361:20077253. CrossRefGoogle Scholar
  117. von Steiger, R., Geiss, J., Gloeckler, G.: 1997, Composition of the solar wind. In: Jokipii, J.R., Sonett, C.P., Giampapa, M.S. (eds.) Cosmic Winds and the Heliosphere, 581. Google Scholar
  118. Vourlidas, A., Wu, S.T., Wang, A.H., Subramanian, P., Howard, R.A.: 2003, Direct detection of a coronal mass ejection-associated shock in large angle and spectrometric coronagraph experiment white-light images. Astrophys. J. 598, 1392 – 1402. doi: 10.1086/379098. ADSCrossRefGoogle Scholar
  119. Vršnak, B., Cliver, E.W.: 2008, Origin of coronal shock waves. Invited review. Solar Phys. 253, 215 – 235. doi: 10.1007/s11207-008-9241-5. ADSCrossRefGoogle Scholar
  120. Wang, Y.-M., Robbrecht, E.: 2011, Asymmetric sunspot activity and the southward displacement of the heliospheric current sheet. Astrophys. J. 736, 136. doi: 10.1088/0004-637X/736/2/136. ADSCrossRefGoogle Scholar
  121. Wang, Y.-M., Sheeley, N.R. Jr.: 2006, Sources of the solar wind at Ulysses during 1990 – 2006. Astrophys. J. 653, 708 – 718. doi: 10.1086/508929. ADSCrossRefGoogle Scholar
  122. Wang, Y.-M., Lean, J., Sheeley, N.R.: 2000, The long-term variation of the Sun’s open magnetic flux. Geophys. Res. Lett. 27, 505 – 508. doi: 10.1029/1999GL010744. ADSCrossRefGoogle Scholar
  123. Wang, Y.-M., Nash, A.G., Sheeley, N.R. Jr.: 1989, Evolution of the Sun’s polar fields during sunspot cycle 21 – Poleward surges and long-term behavior. Astrophys. J. 347, 529 – 539. doi: 10.1086/168143. ADSCrossRefGoogle Scholar
  124. Wang, Y.-M., Biersteker, J.B., Sheeley, N.R. Jr., Koutchmy, S., Mouette, J., Druckmüller, M.: 2007, The solar eclipse of 2006 and the origin of raylike features in the white-light corona. Astrophys. J. 660, 882 – 892. doi: 10.1086/512480. ADSCrossRefGoogle Scholar
  125. Wenzel, K.P., Marsden, R.G., Page, D.E., Smith, E.J.: 1992, The Ulysses mission. Astron. Astrophys. Suppl. Ser. 92, 207. ADSGoogle Scholar
  126. Zhang, J., Dere, K.P.: 2006, A statistical study of main and residual accelerations of coronal mass ejections. Astrophys. J. 649, 1100 – 1109. doi: 10.1086/506903. ADSCrossRefGoogle Scholar
  127. Zirin, H.: 1987, Weak solar fields and their connection to the solar cycle. Solar Phys. 110, 101 – 107. doi: 10.1007/BF00148205. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • D. Müller
    • 1
  • R. G. Marsden
    • 1
  • O. C. St. Cyr
    • 2
  • H. R. Gilbert
    • 2
  • The Solar Orbiter Team
  1. 1.European Space AgencyESTECNoordwijkThe Netherlands
  2. 2.NASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations