Skip to main content
Log in

Strategies for the genetic modification of the medicinal plant Catharanthus roseus (L.) G. Don

  • Review Paper
  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

This review describes the different plant transformation techniques, including guided infection with Agrobacterium tumefaciens and A. rhizogenes, particle bombardment and protoplast fusion, that have been attempted to create transgenic Catharanthus roseus (L.) G. Don cell cultures, hairy roots and whole plants. The review also focuses on the different approaches used to manipulate and improve secondary metabolite yields in various culture systems, with special attention to the most relevant results achieved. Finally, under future perspectives, the authors propose several approaches which would likely be implemented with this species, to try to boost the accumulation of the anti-tumour agents, vinblastine and vincristine. Some comments on how the future of the genetic manipulation of medicinal plants may proceed aiming at achieving higher secondary metabolite yields are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allen RS, Millgate AG, Chitty JA, Thisleton J, Miller JAC, Fist AJ, Gerlach WL, Larkin P (2004) RNAi-mediated replacement of morphine with the non-narcotic alkaloid reticuline in opium poppy. Nat Biotechnol 22:1559–1566

    Article  PubMed  CAS  Google Scholar 

  • Ayora-Talavera T, Chappell J, Lozoya-Gloria E, Loyola-Vargas VM (2002) Overexpression of Catharanthus roseus hairy roots of a truncated hamster 3-hydroxy-3-methylglutaryl-CoA reductase gene. Appl Biochem Biotechnol 97:135–145

    Article  PubMed  CAS  Google Scholar 

  • Batra J, Dutta A, Singh D, Kumar S, Sen J (2004) Growth and terpenoid indole alkaloid production in Catharanthus roseus hairy root clones in relation to left- and right-termini-linked Ri T-DNA gene integration. Plant Cell Rep 23:148–154

    Article  PubMed  CAS  Google Scholar 

  • Bent AF (2000) Arabidopsis in planta transformation: uses, mechanisms, and prospects for transformation of other species. Plant Physiol 124:1540–1547

    Article  PubMed  CAS  Google Scholar 

  • Bird DA, Facchini PJ (2001) Berberine bridge enzyme, a key branch-point enzyme in benzylisoquinoline alkaloid biosynthesis, contains a vascular sorting determinant. Planta 213:888–897

    Article  PubMed  CAS  Google Scholar 

  • Broun P (2004) Transcription factors as a tool for metabolic engineering in plants. Curr Opin Plant Biol 7:202–209

    Article  PubMed  CAS  Google Scholar 

  • Bundock P, del Dulk-Ras A, Beijersbergen A, Hooykaas PJJ (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14:3206–3214

    PubMed  CAS  Google Scholar 

  • Canel C, Lopes-Cardoso MI, Whitmer S, van der Fits L, Pasquali G, van der Heijden R, Hoge JHC, Verpoorte R (1998) Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta 205:414–419

    Article  PubMed  CAS  Google Scholar 

  • Chilton MD, Drummond MH, Merlo DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271

    Article  PubMed  CAS  Google Scholar 

  • Choi PS, Kim YD, Choi KM, Chung HJ, Choi DW, Liu JR (2004) Plant regeneration from hairy root cultures transformed by infection with Agrobacterium rhizogenes in Catharathus roseus. Plant Cell Rep 22:828–831

    Article  PubMed  CAS  Google Scholar 

  • Collu G, Unver N, Peltenburg-Looman AMG, van der Heijden R, Verpoorte R, Memelink J (2001) Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett 508:215–220

    Article  PubMed  CAS  Google Scholar 

  • Contin A, van der Heijden R, Lefeber AWM, Verpoorte R (1998) The iridoid glucoside secologanin is derived from the novel triose phosphate/pyruvate pathway in a Catharanthus roseus cell culture. FEBS Lett 434:413–416

    Article  PubMed  CAS  Google Scholar 

  • Creasey WA (1994) Pharmacology, biochemistry and clinical applications of the monoterpenoid alkaloids. In: Saxton JE (ed) The monoterpenoid indole alkaloids, vol 25, part 4. John Wiley & Sons Ltd., Chichester, England

    Google Scholar 

  • Datta A, Srivastava PS (1997) Variation in vinblastine production by Catharanthus roseus, during in vivo and in vitro differentiation. Phytochemistry 46:135–137

    Article  CAS  Google Scholar 

  • Davies KM, Schwinn KE (2003) Transcriptional regulation of secondary metabolism. Funct Plant Biol 30:913–925

    Article  CAS  Google Scholar 

  • El-Sayed M, Verpoorte R (2005) Methyljasmonate accelerates catabolism of monoterpenoid indole alkaloids in Catharanthus roseus during leaf processing. Fitoterapia 73:83–90

    Article  CAS  Google Scholar 

  • Escobar MA, Dandekar AM (2003) Agrobacterium tumefaciens as an agent of disease. Trends Plant Sci 8:380–386

    Article  PubMed  CAS  Google Scholar 

  • Facchini PJ (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu Rev Plant Mol Biol 52:29–66

    Article  CAS  Google Scholar 

  • Flores HE, Vivanco JM, Loyola-Vargas VM (1999) ‘Radicle’ biochemistry: the biology of root-specific metabolism. Trends Plant Sci 4:220–226

    Article  PubMed  Google Scholar 

  • Geerlings A, Martínez-Lozano Ibañez M, Memelink J, van der Heijden R, Verpoorte R (1999a) Molecular cloning and analysis of strictosidine β-d-glucosidase, an enzyme in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. J Biol Chem 275:3051–3056

    Article  Google Scholar 

  • Geerlings A, Hallard D, Martínez-Caballero A, Lopes-Cardoso I, van der Heijden R, Verpoorte R (1999b) Alkaloid production by a Cinchona officinalis ‘Ledgeriana’ hairy root culture containing constitutive expression constructs for tryptophan decarboxylase and strictosidine synthase cDNAs from Catharanthus roseus. Plant Cell Rep 19:191–196

    Article  CAS  Google Scholar 

  • Geerlings A, Redondo FJ, Contin A, Memelink J, van der Heijden R, Verpoorte R (2001) Biotransformation of tryptamine and secologanin into plant terpenoid indole alkaloids by transgenic yeast. Appl Microbiol Biotechnol 56:420–424

    Article  PubMed  CAS  Google Scholar 

  • Goodbody AE, Endo T, Vukovic J, Kutney JP, Choi LSL, Misawa M (1988) Enzymic coupling of catharanthine and vindoline to form 3’,4’-anhydrovinblastine by horseradish peroxidase. Plant Med 54:136–140

    Article  CAS  Google Scholar 

  • Hallard D, van der Heijden R, Verpoorte R, Cardoso MIL, Pasquali G, Memelink J, Hoge JHC (1997) Suspension cultured transgenic cell of Nicotiana tabacum expressing tryptophan decarboxylase and strictosidine synthase cDNAs from Catharanthus roseus produce strictosidine upon secologanin feeding. Plant Cell Rep 17:50–54

    Article  CAS  Google Scholar 

  • Hallard D (2000) Transgenic plant cells for the production of indole alkaloids. PhD-Thesis Leiden University, ISBN 90-74538-49-5

  • Hansen G, Wright MS (1999) Recent advances in the transformation of plants. Trends Plant Sci 4:226–231

    Article  PubMed  Google Scholar 

  • Hasezawa S, Nagata T, Syono K (1981) Transformation of Vinca protoplasts mediated by Agrobacterium spheroplasts. Mol Gen Genet 182:206–210

    Article  Google Scholar 

  • Hilliou F, Christou P, Leech MJ (1999) Development of an efficient transformation system for Catharanthus roseus cell cultures using particle bombardment. Plant Sci 140:179–188

    Article  CAS  Google Scholar 

  • Hong S-B, Hughes EH, Shanks JV, San K-Y, Gibson S (2003) Role of the non-mevalonate pathway in indole alkaloid production by Catharanthus roseus hairy roots. Biotechnol Prog 19:1105–1108

    Article  PubMed  CAS  Google Scholar 

  • Hooykaas JPP (2000) Agrobacterium, a natural metabolic engineer of plants. In: Verpoorte R, Alfermann AW (eds) Metabolic engineering of plant secondary metabolism. Kluwer Academic Publishers, The Netherlands, pp. 51–67

    Google Scholar 

  • Hughes EH, Hong SB, Shanks JV, San KY, Gibson SI (2002) Characterization of an inducible promoter system in Catharanthus roseus hairy roots. Biotechnol Prog 18:1183–1186

    Article  PubMed  CAS  Google Scholar 

  • Hughes EH, Hong SB, Gibson SI, Shanks JV, San KY (2004a) Expression of a feedback-resistant anthranilate synthase in Catharanthus roseus hairy roots provides evidence for tight regulation of terpenoid indole alkaloid levels. Biotechnol Bioeng 86:718–727

    Article  CAS  Google Scholar 

  • Hughes EH, Hong SB, Gibson SI, Shanks JV, San KY (2004b) Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metabolic Eng 6:268–276

    Article  CAS  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High frequency transformation of maize (Zea mays) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Article  PubMed  CAS  Google Scholar 

  • Johnston SA, Riedy M, DeVit MJ, Sanford JC, McElligot S, Sanders WR (1991) Biolistic transformation of animal tissue. In Vitro Cell Dev Biol 27P:11–14

    CAS  Google Scholar 

  • Katsumata R, Ozaki A, Oka T, Furuya A (1984) Protoplast transformation of glutamate-producing bacteria with plasmid DNA. J Bacteriol 159:306–311

    PubMed  CAS  Google Scholar 

  • Kutchan TM (1995) Alkaloid biosynthesis—the basis for metabolic engineering of medicinal plants. Plant Cell 7:1059–1070

    Article  PubMed  CAS  Google Scholar 

  • Leech MJ, May K, Hallard D, Verpoorte R, de Luca V, Christou P (1998) Expression of two consecutive genes of a secondary metabolic pathway in transgenic tobacco: molecular diversity influences levels of expression and product accumulation. Plant Mol Biol 38:765–774

    Article  PubMed  CAS  Google Scholar 

  • Lessard PA, Kulaveerasingam H, York GM, Strong A, Sinskey AJ (2002) Manipulating gene expression for the metabolic engineering of plants. Metab Eng 4:67–79

    Article  PubMed  CAS  Google Scholar 

  • Lorence A, Verpoorte R (2004) Gene transfer and expression in plants. In: Balbás P, Lorence A (eds) Methods in molecular biology, vol 267, recombinant gene expression. Reviews and protocols. Humana Press Inc., Totowa, NJ; USA, pp. 329–350

    Google Scholar 

  • Memelink J, Verpoorte R, Kijne JW (2001) ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. Trends Plant Sci 6:212–219

    Article  PubMed  CAS  Google Scholar 

  • Menke FLH, Champion A, Kijne JW, Memelink J (1999) A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J 18:4455–4463

    Article  PubMed  CAS  Google Scholar 

  • Moreno PRH, van der Heijden R, Verpoorte R (1995) Cell and tissue cultures of Catharanthus roseus (L.) G. Don: a literature survey II. Updating from 1988 to 1993. Plant Cell Tissue Org Cult 42:1–25

  • Morgan JA, Shanks JV (1999) Inhibitor studies of tabersonine metabolism in C. roseus hairy roots. Phytochemistry 51:61–68

    Article  PubMed  CAS  Google Scholar 

  • Morgan JA, Shanks JV (2000) Determination of metabolic rate-limitations by precursor feeding in Catharanthus roseus hairy root cultures. J Biotechnol 79:137–145

    Article  PubMed  CAS  Google Scholar 

  • Nilsson O, Olsson O (1997) Getting to the root: the role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiol Plant 100:463–473

    Article  CAS  Google Scholar 

  • Okada K, Haseza S, Syono K, Nagata T (1985) Further evidence for the transformation of Vinca rosea protoplasts by Agrobacterium tumefaciens spheroplasts. Plant Cell Rep 4:133–136

    Article  CAS  Google Scholar 

  • Okada K, Nagata T, Takebe I (1986) Introduction of functional RNA into plant protoplasts by electroporation. Plant Cell Physiol 27:619–626

    CAS  Google Scholar 

  • O’Keefe BR, Mahady GB, Gills JJ, Beecher CWW (1997) Stable vindoline production in transformed cell cultures of Catharanthus roseus. J Nat Prod 60:261–264

    Article  CAS  Google Scholar 

  • Palazón J, Cusido RM, Gonzalo J, Bonfill M, Morales C, Pinol C (1998) Relation between the amount of rolC gene product and indole alkaloid accumulation in Catharanthus roseus transformed root cultures. J Plant Physiol 153:712–718

    Google Scholar 

  • Potrykus I (1991) Gene transfer to plants: assessment of published approaches and results. Annu Rev Plant Physiol Plant Mol Biol 42:205–225

    Article  CAS  Google Scholar 

  • Rapley R (2000) Recombinant DNA technology. In: Walker JM, Rapley R (eds) Molecular biology and biotechnology. Royal Society of Chemistry, Cambridge, UK, pp 67–123

    Google Scholar 

  • Rodriguez-Talou J, Verberne MC, Budi Muljono RA, van Tegelen LJP, Gonsalvez-Bernal B, Linthorst HJM, Wullems GJ, Bol JF, Verpoorte R (2001) Isochorismate synthase transgenic expression in Catharanthus roseus cell suspensions. Plant Physiol Biochem 39:595–602

    Article  CAS  Google Scholar 

  • Ruíz-Díez B (2002) Strategies for the transformation of filamentous fungi. J Appl Microbiol 92:189–195

    Article  PubMed  Google Scholar 

  • Samuelsson G (1999) Drugs of natural origin. A textbook of pharmacognosy, 4 edn. Swedish Pharmaceutical Press, Sweden, pp 484–487

  • Sanford JC, Klein TM, Wold ED, Allen N (1987) Delivery of substances into cells and tissue using a particle bombardment process. J Plant Sci Tech 5:27–37

    CAS  Google Scholar 

  • Sayavedra-Soto L, Krikonian A (2000) Long term stability of electromanipulated protoplasts of Glycine max var. Acme and a Catharanthus roseus mutant. J Plant Physiol 156:137–140

    CAS  Google Scholar 

  • Smith FD, Harpending PR, Sanford JC (1992) Biolistic transformation of procaryotes: factors that affect biolistic transformation of very small cells. J Gen Microbiol 138:239–248

    PubMed  CAS  Google Scholar 

  • Tepfter D (1990) Genetic transformation using Agrobacterium rhizogenes. Physiol Plant 79:140–146

    Article  Google Scholar 

  • Toffaletti DL, Rude TH, Johnston SA, Durack DT, Perfect JR (1993) Gene transfer in Cryptococcus neoformans by use of biolistic delivery of DNA. J Bacteriol 175:1405–1411

    PubMed  CAS  Google Scholar 

  • Van der Fits L, Memelink J (1997) Comparison of the activities of CaMV 35S and FMV 34S promoter derivatives in Catharanthus roseus cells transiently and stably transformed by particle bombardment. Plant Mol Biol 33:943–946

    Article  CAS  Google Scholar 

  • Van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297

    Article  CAS  Google Scholar 

  • Van der Fits L, Deakin EA, Hoge JHC, Memelink J (2000) The ternary transformation system: constitutive virG on a compatible plasmid dramatically increases Agrobacterium-mediated plant transformation. Plant Mol Biol 43:495–502

    Article  CAS  Google Scholar 

  • Van der Heijden R, Verpoorte R, Ten Hoopen HJG (1989) Cell and tissue cultures of Catharanthus roseus (L.) G. Don: a literature survey. Plant Cell Tiss Org Cult 80:231–280

    Article  Google Scholar 

  • Van der Heijden R, Jabos DJ, Snoeijer W, Hallard D, Verpoorte R (2004) The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 11:1241–1253

    Article  Google Scholar 

  • Van Gulik, WM, Meijer JJ, Ten Hoopen HJG, Luyben CAM, Libbenga KR (1989) Growth of a Catharanthus roseus cell suspension culture in a modified chemostat under glucose-limiting conditions. Appl Microbiol Biotechnol 30:270–275

    Article  CAS  Google Scholar 

  • Verpoorte R, van der Heijden R, Schripsema J (1993) Plant cell biotechnology for the production of alkaloids: present status and prospects. J Nat Prod 56:186–207

    Article  CAS  Google Scholar 

  • Verpoorte R, van der Heijden R, Moreno PRH (1997) Biosynthesis of terpenoid indole alkaloids in Catharanthus roseus cells. In: Cordell GA (ed) The alkaloids, vol 49. Academic Press, San Diego, USA, 221 pp

    Google Scholar 

  • Verpoorte R, van der Heijden R, Memelink J (1998) Plant biotechnology and the production of alkaloids: prospects of metabolic engineering. In: Cordell GA (ed) The alkaloids, vol 50 Academic Press, San Diego, USA, pp. 453–462

    Google Scholar 

  • Verpoorte R, Alfermann AW (2000) Metabolic engineering of plant secondary metabolism. In: Verpoorte R, Alfermann AW (eds) Kluwer Academic Publishers, Dordrecht, The Netherlands

  • Verpoorte R, van der Heijden R, Memelink J (2000) Engineering the plant cell factory for secondary metabolite production. Transgenic Res 9:323–343

    Article  PubMed  CAS  Google Scholar 

  • Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13–25

    Article  CAS  Google Scholar 

  • Walkerpeach CR, Velten J (1994) Agrobacterium-mediated gene transfer to plant cells: cointegrate and binary vector systems. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp B1:1–19

    Google Scholar 

  • Waterhouse PM, Wang M, Lough T (2001) Gene silencing as an adaptive defence against viruses. Nature 411:834–842

    Article  PubMed  CAS  Google Scholar 

  • Whitmer S (1999) Aspects of terpenoid indole alkaloid formation by transgenic cell lines of Catharanthus roseus over-expressing tryptophan decarboxylase and strictosidine synthase. PhD Thesis, Leiden University, Leiden, The Netherlands, ISBN 90-74538-48-7

  • Whitmer S, van der Heijden R, Verpoorte R (2002) Effect of precursor feeding on alkaloid accumulation by a tryptophan decarboxylase over-expressing transgenic cell line T22 of Catharanthus roseus. J Biotechnol 96:193–203

    Article  PubMed  CAS  Google Scholar 

  • Whitmer S, Canel C, van der Heijden R, Verpoorte R (2003) Long-term instability of alkaloid production by stably transformed cell lines of Catharanthus roseus. Plant Cell Tiss Org Cult 74:73–80

    Article  CAS  Google Scholar 

  • Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid free) rice endosperm. Science 287:303–305

    Article  PubMed  CAS  Google Scholar 

  • Yun D-J, Hashimoto T, Yamada Y (1992) Metabolic engineering of medicinal plants: transgenic Atropa belladonna with an improved alkaloid composition. Proc Natl Acad Sci USA 89:11799–11803

    Article  PubMed  CAS  Google Scholar 

  • Zambre M, Terryn N, de Clercq J, de Buck S, Dillen W, van Montagu M, van der Straeten D, Angenon G (2003) Light strongly promotes gene transfer from Agrobacterium tumefaciens to plant cells. Planta 216:580–586

    PubMed  CAS  Google Scholar 

  • Zárate R (1999) Tropane alkaloid production by Agrobacterium rhizogenes transformed hairy cultures of Atropa baetica Willk. (Solanaceae). Plant Cell Rep 18:418–423

    Article  Google Scholar 

  • Zárate R, Memelink J, van der Heijden R, Verpoorte R (1999) Genetic transformation via particle bombardment of Catharanthus roseus plants through adventitious organogenesis of buds. Biotechnol Lett 21:997–1002

    Article  Google Scholar 

  • Zárate R, Yeoman MM (2001) Application of recombinant DNA technology to studies on plant secondary metabolism. In: Bender L, Kumar A (eds) From soil to cell—a broach approach to plant life, pp. 82–96. Giessen Electronic Library, Germany (http://www.bibd.uni-giessen.de/ghtm/2001/uni/p010012.htm)

  • Zárate R, Bonavia M, Geerlings A, van der Heijden R, Verpoorte R (2001a) Expression of strictosidine β-d-glucosidase cDNA, involved in the monoterpene indole alkaloid pathway, from Catharanthus roseus in a transgenic suspension culture of Nicotiana tabacum. Plant Physiol Biochem 39:1–7

    Article  Google Scholar 

  • Zárate R, Dirks C, van der Heijden R, Verpoorte R (2001b) Terpenoid indole alkaloid profile changes in Catharanthus pusillus during development. Plant Sci 160:971–977

    Article  Google Scholar 

  • Zhao J, Zhu W-H, Hu Q, Guo Y-Q (2000) Improvement of indole alkaloid production in Catharanthus roseus cell cultures by osmotic shock. Biotechnol Lett 22:1227–1231

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. A. Sadowska for the invitation to contribute to this special issue on Catharanthus roseus research. RZ acknowledges funding from Ramón y Cajal program and SAF203-04-200-CO2-02 (Spanish Ministry of Science and Technology) and Instituto Canario de Investigación del Cáncer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Zárate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zárate, R., Verpoorte, R. Strategies for the genetic modification of the medicinal plant Catharanthus roseus (L.) G. Don. Phytochem Rev 6, 475–491 (2007). https://doi.org/10.1007/s11101-006-9020-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-006-9020-6

Keywords

Navigation