Phytochemistry Reviews

, Volume 6, Issue 2–3, pp 475–491

Strategies for the genetic modification of the medicinal plant Catharanthus roseus (L.) G. Don

Review Paper

Abstract

This review describes the different plant transformation techniques, including guided infection with Agrobacterium tumefaciens and A. rhizogenes, particle bombardment and protoplast fusion, that have been attempted to create transgenic Catharanthus roseus (L.) G. Don cell cultures, hairy roots and whole plants. The review also focuses on the different approaches used to manipulate and improve secondary metabolite yields in various culture systems, with special attention to the most relevant results achieved. Finally, under future perspectives, the authors propose several approaches which would likely be implemented with this species, to try to boost the accumulation of the anti-tumour agents, vinblastine and vincristine. Some comments on how the future of the genetic manipulation of medicinal plants may proceed aiming at achieving higher secondary metabolite yields are also given.

Keywords

Agrobacterium Catharanthus roseus Genetic engineering Genetic transformation techniques Terpenoid indole alkaloids 

References

  1. Allen RS, Millgate AG, Chitty JA, Thisleton J, Miller JAC, Fist AJ, Gerlach WL, Larkin P (2004) RNAi-mediated replacement of morphine with the non-narcotic alkaloid reticuline in opium poppy. Nat Biotechnol 22:1559–1566PubMedCrossRefGoogle Scholar
  2. Ayora-Talavera T, Chappell J, Lozoya-Gloria E, Loyola-Vargas VM (2002) Overexpression of Catharanthus roseus hairy roots of a truncated hamster 3-hydroxy-3-methylglutaryl-CoA reductase gene. Appl Biochem Biotechnol 97:135–145PubMedCrossRefGoogle Scholar
  3. Batra J, Dutta A, Singh D, Kumar S, Sen J (2004) Growth and terpenoid indole alkaloid production in Catharanthus roseus hairy root clones in relation to left- and right-termini-linked Ri T-DNA gene integration. Plant Cell Rep 23:148–154PubMedCrossRefGoogle Scholar
  4. Bent AF (2000) Arabidopsis in planta transformation: uses, mechanisms, and prospects for transformation of other species. Plant Physiol 124:1540–1547PubMedCrossRefGoogle Scholar
  5. Bird DA, Facchini PJ (2001) Berberine bridge enzyme, a key branch-point enzyme in benzylisoquinoline alkaloid biosynthesis, contains a vascular sorting determinant. Planta 213:888–897PubMedCrossRefGoogle Scholar
  6. Broun P (2004) Transcription factors as a tool for metabolic engineering in plants. Curr Opin Plant Biol 7:202–209PubMedCrossRefGoogle Scholar
  7. Bundock P, del Dulk-Ras A, Beijersbergen A, Hooykaas PJJ (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14:3206–3214PubMedGoogle Scholar
  8. Canel C, Lopes-Cardoso MI, Whitmer S, van der Fits L, Pasquali G, van der Heijden R, Hoge JHC, Verpoorte R (1998) Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta 205:414–419PubMedCrossRefGoogle Scholar
  9. Chilton MD, Drummond MH, Merlo DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271PubMedCrossRefGoogle Scholar
  10. Choi PS, Kim YD, Choi KM, Chung HJ, Choi DW, Liu JR (2004) Plant regeneration from hairy root cultures transformed by infection with Agrobacterium rhizogenes in Catharathus roseus. Plant Cell Rep 22:828–831PubMedCrossRefGoogle Scholar
  11. Collu G, Unver N, Peltenburg-Looman AMG, van der Heijden R, Verpoorte R, Memelink J (2001) Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett 508:215–220PubMedCrossRefGoogle Scholar
  12. Contin A, van der Heijden R, Lefeber AWM, Verpoorte R (1998) The iridoid glucoside secologanin is derived from the novel triose phosphate/pyruvate pathway in a Catharanthus roseus cell culture. FEBS Lett 434:413–416PubMedCrossRefGoogle Scholar
  13. Creasey WA (1994) Pharmacology, biochemistry and clinical applications of the monoterpenoid alkaloids. In: Saxton JE (ed) The monoterpenoid indole alkaloids, vol 25, part 4. John Wiley & Sons Ltd., Chichester, EnglandGoogle Scholar
  14. Datta A, Srivastava PS (1997) Variation in vinblastine production by Catharanthus roseus, during in vivo and in vitro differentiation. Phytochemistry 46:135–137CrossRefGoogle Scholar
  15. Davies KM, Schwinn KE (2003) Transcriptional regulation of secondary metabolism. Funct Plant Biol 30:913–925CrossRefGoogle Scholar
  16. El-Sayed M, Verpoorte R (2005) Methyljasmonate accelerates catabolism of monoterpenoid indole alkaloids in Catharanthus roseus during leaf processing. Fitoterapia 73:83–90CrossRefGoogle Scholar
  17. Escobar MA, Dandekar AM (2003) Agrobacterium tumefaciens as an agent of disease. Trends Plant Sci 8:380–386PubMedCrossRefGoogle Scholar
  18. Facchini PJ (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu Rev Plant Mol Biol 52:29–66CrossRefGoogle Scholar
  19. Flores HE, Vivanco JM, Loyola-Vargas VM (1999) ‘Radicle’ biochemistry: the biology of root-specific metabolism. Trends Plant Sci 4:220–226PubMedCrossRefGoogle Scholar
  20. Geerlings A, Martínez-Lozano Ibañez M, Memelink J, van der Heijden R, Verpoorte R (1999a) Molecular cloning and analysis of strictosidine β-d-glucosidase, an enzyme in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. J Biol Chem 275:3051–3056CrossRefGoogle Scholar
  21. Geerlings A, Hallard D, Martínez-Caballero A, Lopes-Cardoso I, van der Heijden R, Verpoorte R (1999b) Alkaloid production by a Cinchona officinalis ‘Ledgeriana’ hairy root culture containing constitutive expression constructs for tryptophan decarboxylase and strictosidine synthase cDNAs from Catharanthus roseus. Plant Cell Rep 19:191–196CrossRefGoogle Scholar
  22. Geerlings A, Redondo FJ, Contin A, Memelink J, van der Heijden R, Verpoorte R (2001) Biotransformation of tryptamine and secologanin into plant terpenoid indole alkaloids by transgenic yeast. Appl Microbiol Biotechnol 56:420–424PubMedCrossRefGoogle Scholar
  23. Goodbody AE, Endo T, Vukovic J, Kutney JP, Choi LSL, Misawa M (1988) Enzymic coupling of catharanthine and vindoline to form 3’,4’-anhydrovinblastine by horseradish peroxidase. Plant Med 54:136–140CrossRefGoogle Scholar
  24. Hallard D, van der Heijden R, Verpoorte R, Cardoso MIL, Pasquali G, Memelink J, Hoge JHC (1997) Suspension cultured transgenic cell of Nicotiana tabacum expressing tryptophan decarboxylase and strictosidine synthase cDNAs from Catharanthus roseus produce strictosidine upon secologanin feeding. Plant Cell Rep 17:50–54CrossRefGoogle Scholar
  25. Hallard D (2000) Transgenic plant cells for the production of indole alkaloids. PhD-Thesis Leiden University, ISBN 90-74538-49-5Google Scholar
  26. Hansen G, Wright MS (1999) Recent advances in the transformation of plants. Trends Plant Sci 4:226–231PubMedCrossRefGoogle Scholar
  27. Hasezawa S, Nagata T, Syono K (1981) Transformation of Vinca protoplasts mediated by Agrobacterium spheroplasts. Mol Gen Genet 182:206–210CrossRefGoogle Scholar
  28. Hilliou F, Christou P, Leech MJ (1999) Development of an efficient transformation system for Catharanthus roseus cell cultures using particle bombardment. Plant Sci 140:179–188CrossRefGoogle Scholar
  29. Hong S-B, Hughes EH, Shanks JV, San K-Y, Gibson S (2003) Role of the non-mevalonate pathway in indole alkaloid production by Catharanthus roseus hairy roots. Biotechnol Prog 19:1105–1108PubMedCrossRefGoogle Scholar
  30. Hooykaas JPP (2000) Agrobacterium, a natural metabolic engineer of plants. In: Verpoorte R, Alfermann AW (eds) Metabolic engineering of plant secondary metabolism. Kluwer Academic Publishers, The Netherlands, pp. 51–67Google Scholar
  31. Hughes EH, Hong SB, Shanks JV, San KY, Gibson SI (2002) Characterization of an inducible promoter system in Catharanthus roseus hairy roots. Biotechnol Prog 18:1183–1186PubMedCrossRefGoogle Scholar
  32. Hughes EH, Hong SB, Gibson SI, Shanks JV, San KY (2004a) Expression of a feedback-resistant anthranilate synthase in Catharanthus roseus hairy roots provides evidence for tight regulation of terpenoid indole alkaloid levels. Biotechnol Bioeng 86:718–727CrossRefGoogle Scholar
  33. Hughes EH, Hong SB, Gibson SI, Shanks JV, San KY (2004b) Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metabolic Eng 6:268–276CrossRefGoogle Scholar
  34. Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High frequency transformation of maize (Zea mays) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750PubMedCrossRefGoogle Scholar
  35. Johnston SA, Riedy M, DeVit MJ, Sanford JC, McElligot S, Sanders WR (1991) Biolistic transformation of animal tissue. In Vitro Cell Dev Biol 27P:11–14Google Scholar
  36. Katsumata R, Ozaki A, Oka T, Furuya A (1984) Protoplast transformation of glutamate-producing bacteria with plasmid DNA. J Bacteriol 159:306–311PubMedGoogle Scholar
  37. Kutchan TM (1995) Alkaloid biosynthesis—the basis for metabolic engineering of medicinal plants. Plant Cell 7:1059–1070PubMedCrossRefGoogle Scholar
  38. Leech MJ, May K, Hallard D, Verpoorte R, de Luca V, Christou P (1998) Expression of two consecutive genes of a secondary metabolic pathway in transgenic tobacco: molecular diversity influences levels of expression and product accumulation. Plant Mol Biol 38:765–774PubMedCrossRefGoogle Scholar
  39. Lessard PA, Kulaveerasingam H, York GM, Strong A, Sinskey AJ (2002) Manipulating gene expression for the metabolic engineering of plants. Metab Eng 4:67–79PubMedCrossRefGoogle Scholar
  40. Lorence A, Verpoorte R (2004) Gene transfer and expression in plants. In: Balbás P, Lorence A (eds) Methods in molecular biology, vol 267, recombinant gene expression. Reviews and protocols. Humana Press Inc., Totowa, NJ; USA, pp. 329–350Google Scholar
  41. Memelink J, Verpoorte R, Kijne JW (2001) ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. Trends Plant Sci 6:212–219PubMedCrossRefGoogle Scholar
  42. Menke FLH, Champion A, Kijne JW, Memelink J (1999) A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J 18:4455–4463PubMedCrossRefGoogle Scholar
  43. Moreno PRH, van der Heijden R, Verpoorte R (1995) Cell and tissue cultures of Catharanthus roseus (L.) G. Don: a literature survey II. Updating from 1988 to 1993. Plant Cell Tissue Org Cult 42:1–25Google Scholar
  44. Morgan JA, Shanks JV (1999) Inhibitor studies of tabersonine metabolism in C. roseus hairy roots. Phytochemistry 51:61–68PubMedCrossRefGoogle Scholar
  45. Morgan JA, Shanks JV (2000) Determination of metabolic rate-limitations by precursor feeding in Catharanthus roseus hairy root cultures. J Biotechnol 79:137–145PubMedCrossRefGoogle Scholar
  46. Nilsson O, Olsson O (1997) Getting to the root: the role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiol Plant 100:463–473CrossRefGoogle Scholar
  47. Okada K, Haseza S, Syono K, Nagata T (1985) Further evidence for the transformation of Vinca rosea protoplasts by Agrobacterium tumefaciens spheroplasts. Plant Cell Rep 4:133–136CrossRefGoogle Scholar
  48. Okada K, Nagata T, Takebe I (1986) Introduction of functional RNA into plant protoplasts by electroporation. Plant Cell Physiol 27:619–626Google Scholar
  49. O’Keefe BR, Mahady GB, Gills JJ, Beecher CWW (1997) Stable vindoline production in transformed cell cultures of Catharanthus roseus. J Nat Prod 60:261–264CrossRefGoogle Scholar
  50. Palazón J, Cusido RM, Gonzalo J, Bonfill M, Morales C, Pinol C (1998) Relation between the amount of rolC gene product and indole alkaloid accumulation in Catharanthus roseus transformed root cultures. J Plant Physiol 153:712–718Google Scholar
  51. Potrykus I (1991) Gene transfer to plants: assessment of published approaches and results. Annu Rev Plant Physiol Plant Mol Biol 42:205–225CrossRefGoogle Scholar
  52. Rapley R (2000) Recombinant DNA technology. In: Walker JM, Rapley R (eds) Molecular biology and biotechnology. Royal Society of Chemistry, Cambridge, UK, pp 67–123Google Scholar
  53. Rodriguez-Talou J, Verberne MC, Budi Muljono RA, van Tegelen LJP, Gonsalvez-Bernal B, Linthorst HJM, Wullems GJ, Bol JF, Verpoorte R (2001) Isochorismate synthase transgenic expression in Catharanthus roseus cell suspensions. Plant Physiol Biochem 39:595–602CrossRefGoogle Scholar
  54. Ruíz-Díez B (2002) Strategies for the transformation of filamentous fungi. J Appl Microbiol 92:189–195PubMedCrossRefGoogle Scholar
  55. Samuelsson G (1999) Drugs of natural origin. A textbook of pharmacognosy, 4 edn. Swedish Pharmaceutical Press, Sweden, pp 484–487Google Scholar
  56. Sanford JC, Klein TM, Wold ED, Allen N (1987) Delivery of substances into cells and tissue using a particle bombardment process. J Plant Sci Tech 5:27–37Google Scholar
  57. Sayavedra-Soto L, Krikonian A (2000) Long term stability of electromanipulated protoplasts of Glycine max var. Acme and a Catharanthus roseus mutant. J Plant Physiol 156:137–140Google Scholar
  58. Smith FD, Harpending PR, Sanford JC (1992) Biolistic transformation of procaryotes: factors that affect biolistic transformation of very small cells. J Gen Microbiol 138:239–248PubMedGoogle Scholar
  59. Tepfter D (1990) Genetic transformation using Agrobacterium rhizogenes. Physiol Plant 79:140–146CrossRefGoogle Scholar
  60. Toffaletti DL, Rude TH, Johnston SA, Durack DT, Perfect JR (1993) Gene transfer in Cryptococcus neoformans by use of biolistic delivery of DNA. J Bacteriol 175:1405–1411PubMedGoogle Scholar
  61. Van der Fits L, Memelink J (1997) Comparison of the activities of CaMV 35S and FMV 34S promoter derivatives in Catharanthus roseus cells transiently and stably transformed by particle bombardment. Plant Mol Biol 33:943–946CrossRefGoogle Scholar
  62. Van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297CrossRefGoogle Scholar
  63. Van der Fits L, Deakin EA, Hoge JHC, Memelink J (2000) The ternary transformation system: constitutive virG on a compatible plasmid dramatically increases Agrobacterium-mediated plant transformation. Plant Mol Biol 43:495–502CrossRefGoogle Scholar
  64. Van der Heijden R, Verpoorte R, Ten Hoopen HJG (1989) Cell and tissue cultures of Catharanthus roseus (L.) G. Don: a literature survey. Plant Cell Tiss Org Cult 80:231–280CrossRefGoogle Scholar
  65. Van der Heijden R, Jabos DJ, Snoeijer W, Hallard D, Verpoorte R (2004) The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 11:1241–1253CrossRefGoogle Scholar
  66. Van Gulik, WM, Meijer JJ, Ten Hoopen HJG, Luyben CAM, Libbenga KR (1989) Growth of a Catharanthus roseus cell suspension culture in a modified chemostat under glucose-limiting conditions. Appl Microbiol Biotechnol 30:270–275CrossRefGoogle Scholar
  67. Verpoorte R, van der Heijden R, Schripsema J (1993) Plant cell biotechnology for the production of alkaloids: present status and prospects. J Nat Prod 56:186–207CrossRefGoogle Scholar
  68. Verpoorte R, van der Heijden R, Moreno PRH (1997) Biosynthesis of terpenoid indole alkaloids in Catharanthus roseus cells. In: Cordell GA (ed) The alkaloids, vol 49. Academic Press, San Diego, USA, 221 ppGoogle Scholar
  69. Verpoorte R, van der Heijden R, Memelink J (1998) Plant biotechnology and the production of alkaloids: prospects of metabolic engineering. In: Cordell GA (ed) The alkaloids, vol 50 Academic Press, San Diego, USA, pp. 453–462Google Scholar
  70. Verpoorte R, Alfermann AW (2000) Metabolic engineering of plant secondary metabolism. In: Verpoorte R, Alfermann AW (eds) Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  71. Verpoorte R, van der Heijden R, Memelink J (2000) Engineering the plant cell factory for secondary metabolite production. Transgenic Res 9:323–343PubMedCrossRefGoogle Scholar
  72. Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13–25CrossRefGoogle Scholar
  73. Walkerpeach CR, Velten J (1994) Agrobacterium-mediated gene transfer to plant cells: cointegrate and binary vector systems. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp B1:1–19Google Scholar
  74. Waterhouse PM, Wang M, Lough T (2001) Gene silencing as an adaptive defence against viruses. Nature 411:834–842PubMedCrossRefGoogle Scholar
  75. Whitmer S (1999) Aspects of terpenoid indole alkaloid formation by transgenic cell lines of Catharanthus roseus over-expressing tryptophan decarboxylase and strictosidine synthase. PhD Thesis, Leiden University, Leiden, The Netherlands, ISBN 90-74538-48-7Google Scholar
  76. Whitmer S, van der Heijden R, Verpoorte R (2002) Effect of precursor feeding on alkaloid accumulation by a tryptophan decarboxylase over-expressing transgenic cell line T22 of Catharanthus roseus. J Biotechnol 96:193–203PubMedCrossRefGoogle Scholar
  77. Whitmer S, Canel C, van der Heijden R, Verpoorte R (2003) Long-term instability of alkaloid production by stably transformed cell lines of Catharanthus roseus. Plant Cell Tiss Org Cult 74:73–80CrossRefGoogle Scholar
  78. Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid free) rice endosperm. Science 287:303–305PubMedCrossRefGoogle Scholar
  79. Yun D-J, Hashimoto T, Yamada Y (1992) Metabolic engineering of medicinal plants: transgenic Atropa belladonna with an improved alkaloid composition. Proc Natl Acad Sci USA 89:11799–11803PubMedCrossRefGoogle Scholar
  80. Zambre M, Terryn N, de Clercq J, de Buck S, Dillen W, van Montagu M, van der Straeten D, Angenon G (2003) Light strongly promotes gene transfer from Agrobacterium tumefaciens to plant cells. Planta 216:580–586PubMedGoogle Scholar
  81. Zárate R (1999) Tropane alkaloid production by Agrobacterium rhizogenes transformed hairy cultures of Atropa baetica Willk. (Solanaceae). Plant Cell Rep 18:418–423CrossRefGoogle Scholar
  82. Zárate R, Memelink J, van der Heijden R, Verpoorte R (1999) Genetic transformation via particle bombardment of Catharanthus roseus plants through adventitious organogenesis of buds. Biotechnol Lett 21:997–1002CrossRefGoogle Scholar
  83. Zárate R, Yeoman MM (2001) Application of recombinant DNA technology to studies on plant secondary metabolism. In: Bender L, Kumar A (eds) From soil to cell—a broach approach to plant life, pp. 82–96. Giessen Electronic Library, Germany (http://www.bibd.uni-giessen.de/ghtm/2001/uni/p010012.htm)
  84. Zárate R, Bonavia M, Geerlings A, van der Heijden R, Verpoorte R (2001a) Expression of strictosidine β-d-glucosidase cDNA, involved in the monoterpene indole alkaloid pathway, from Catharanthus roseus in a transgenic suspension culture of Nicotiana tabacum. Plant Physiol Biochem 39:1–7CrossRefGoogle Scholar
  85. Zárate R, Dirks C, van der Heijden R, Verpoorte R (2001b) Terpenoid indole alkaloid profile changes in Catharanthus pusillus during development. Plant Sci 160:971–977CrossRefGoogle Scholar
  86. Zhao J, Zhu W-H, Hu Q, Guo Y-Q (2000) Improvement of indole alkaloid production in Catharanthus roseus cell cultures by osmotic shock. Biotechnol Lett 22:1227–1231CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Instituto Universitario de Bio-Orgánica, A.G. GonzálezUniversity of La LagunaLa Laguna, TenerifeSpain
  2. 2.Instituto Canario de Investigación del CáncerLa Candelaria HospitalTenerifeSpain
  3. 3.Department of Pharmacognosy, Section of Metabolomics, Institute of Biology LeidenUniversity of LeidenLeidenThe Netherlands

Personalised recommendations