Advertisement

Pharmaceutical Research

, Volume 25, Issue 8, pp 1815–1821 | Cite as

Role of Particle Size in Phagocytosis of Polymeric Microspheres

  • Julie A. Champion
  • Amanda Walker
  • Samir Mitragotri
Research Paper

Abstract

Purpose

Polymeric microspheres are extensively researched for applications in drug and vaccine delivery. However, upon administration into the body, microspheres are primarily cleared via phagocytosis by macrophages. Although numerous studies have reported on the biochemical pathways of phagocytosis, relatively little is known about the dependence of phagocytosis on particle size. Here, we investigate the previously unexplained dependence of phagocytosis on particle size.

Methods

Rat alveolar macrophages and IgG-opsonized and non-opsonized polystyrene microspheres were used as model macrophages and drug delivery particles. Phagocytosis, attachment and internalization were measured by flow cytometry and time-lapse video microscopy.

Results

Particles possessing diameters of 2–3 μm exhibited maximal phagocytosis and attachment. Rate of internalization, however, was not affected significantly by particle size. Maximal attachment of 2–3 μm microspheres is hypothesized to originate from the characteristic features of membrane ruffles in macrophages. Elimination of ruffles via osmotic swelling nearly eliminated the peculiar size-dependence of phagocytosis. A simple mathematical model is presented to describe the dependence of phagocytosis on particle size.

Conclusions

The dependence of phagocytosis on particle size originated primarily from the attachment step. These results reveal the importance of controlling drug delivery particle size distribution and selecting the size appropriate for avoiding or encouraging phagocytosis.

Key words

drug delivery macrophage microsphere phagocytosis size 

Notes

Acknowledgements

JAC was supported by a fellowship from the National Science Foundation. This work was supported by a grant from the University of California Biotechnology Research and Education Program. This work was partially supported by the MRSEC Program of the National Science Foundation under Award No. DMR00-80034.

References

  1. 1.
    D. A. LaVan, D. M. Lynn, and R. Langer. Moving smaller in drug discovery and delivery. Nat. Rev. Drug Discov. 1:77–84 (2002).PubMedCrossRefGoogle Scholar
  2. 2.
    J. Hanes, M. Chiba, and R. Langer. Polymer microspheres for vaccine delivery. Pharm. Biotechnol. 6:389–412 (1995).PubMedGoogle Scholar
  3. 3.
    V. R. Sinha, and A. Trehan. Biodegradable microspheres for protein delivery. J. Control. Release. 90:261–280 (2003).PubMedCrossRefGoogle Scholar
  4. 4.
    C. X. Song, V. Labhasetwar, X. M. Cui, T. Underwood, and R. J. Levy. Arterial uptake of biodegradable nanoparticles for intravascular local drug delivery: Results with an acute dog model. J. Control. Release. 54:201–211 (1998).PubMedCrossRefGoogle Scholar
  5. 5.
    M. Sakagami, and P. R. Byron. Respirable microspheres for inhalation: The potential of manipulating pulmonary disposition for improved therapeutic efficacy. Clin. Pharmacokinet. 44:263–277 (2005).PubMedCrossRefGoogle Scholar
  6. 6.
    Y. Li, H. L. Jiang, K. J. Zhu, J. H. Liu, and Y. L. Hao. Preparation, characterization and nasal delivery of alpha-cobrotoxin-loaded poly(lactide-co-glycolide)/polyanhydride microspheres. J. Control. Release. 108:10–20 (2005).PubMedCrossRefGoogle Scholar
  7. 7.
    Y. Yamaguchi, M. Takenaga, A. Kitagawa, Y. Ogawa, Y. Mizushima, and R. Igarashi. Insulin-loaded biodegradable PLGA microcapsules: Initial burst release controlled by hydrophilic additives. J. Control. Release. 81:235–249 (2002).PubMedCrossRefGoogle Scholar
  8. 8.
    S. H. Djaldetti, M. Bergman, R. Djaldetti, and H. Bessler. Phagocytosis—the mighty weapon of the silent warriors. Microsc. Res. Tech. 57:421–431 (2002).PubMedCrossRefGoogle Scholar
  9. 9.
    A. Aderem, and D. M. Underhill. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17:593–623 (1999).PubMedCrossRefGoogle Scholar
  10. 10.
    S. D. Xiang, A. Scholzen, G. Minigo, C. David, V. Apostolopoulos, P. L. Mottram, and M. Plebanski. Pathogen recognition and development of particulate vaccines: Does size matter? Methods. 40:1–9 (2006).PubMedCrossRefGoogle Scholar
  11. 11.
    L. Peiser, S. Mukhopadhyay, and S. Gordon. Scavenger receptors in innate immunity. Curr. Opin. Immunol. 14:123–128 (2002).PubMedCrossRefGoogle Scholar
  12. 12.
    S. P. Hart, J. R. Smith, and I. Dransfield. Phagocytosis of opsonized apoptotic cells: roles for 'old-fashioned' receptors for antibody and complement. Clin. Exp. Immunol. 135:181–185 (2004).PubMedCrossRefGoogle Scholar
  13. 13.
    S. Greenberg, and S. Grinstein. Phagocytosis and innate immunity. Curr. Opin. Immunol. 14:136–145 (2002).PubMedCrossRefGoogle Scholar
  14. 14.
    L. -A. H. Allen, and A. Aderem. Mechanisms of phagocytosis. Curr. Opin. Immunol. 8:36–40 (1996).PubMedCrossRefGoogle Scholar
  15. 15.
    R. May, E. Caron, A. Hall, and L. M. Machesky. Involvement of the Arp2/3 complex in phagocytosis mediated by FcgammaR or CR3. Nat. Cell Biol. 2:246–248 (2000).PubMedCrossRefGoogle Scholar
  16. 16.
    G. Kaplan. Differences in the mode of phagocytosis with Fc and C3 receptors in macrophages. Scand. J. Immunol. 6:797–807 (1977).PubMedCrossRefGoogle Scholar
  17. 17.
    L. Kobzik. Lung macrophage uptake of unopsonized environmental particulates—role of scavenger-type receptors. J. Immunol. 155:367–376 (1995).PubMedGoogle Scholar
  18. 18.
    K. A. Beningo, and Y. L. Wang. Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target. J. Cell Sci. 115:849–856 (2002).PubMedGoogle Scholar
  19. 19.
    J. A. Champion, and S. Mitragotri. Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. U. S. A. 103:4930–4934 (2006).PubMedCrossRefGoogle Scholar
  20. 20.
    F. L. Ahsan, I. P. Rivas, M. A. Khan, and A. I. T. Suarez. Targeting to macrophages: Role of physicochemical properties of particulate carriers—liposomes and microspheres—on the phagocytosis by macrophages. J. Control. Release. 79:29–40 (2002).PubMedCrossRefGoogle Scholar
  21. 21.
    D. E. Owens III, and N. A. Peppas. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307:93–102 (2006).PubMedCrossRefGoogle Scholar
  22. 22.
    H. Kawaguchi, N. Koiwai, Y. Ohtsuka, M. Miyamoto, and S. Sasakawa. Phagocytosis of latex-particles by leukocytes .1. Dependence of phagocytosis on the size and surface-potential of particles. Biomaterials. 7:61–66 (1986).PubMedCrossRefGoogle Scholar
  23. 23.
    Y. Tabata, and Y. Ikada. Effect of the size and surface-charge of polymer microspheres on their phagocytosis by macrophage. Biomaterials. 9:356–362 (1988).PubMedCrossRefGoogle Scholar
  24. 24.
    S. I. Simon, and G. W. Schmidschonbein. Biophysical aspects of microsphere engulfment by human-neutrophils. Biophys. J. 53:163–173 (1988).PubMedGoogle Scholar
  25. 25.
    Y. Tabata, and Y. Ikada. Phagocytosis of polymer microspheres by macrophages. Adv. Polym. Sci. 94:107–141 (1990).CrossRefGoogle Scholar
  26. 26.
    S. Rudt, and R. H. Muller. In vitro phagocytosis assay of nano- and microparticles by chemiluminescence III Uptake of differently sized surface-modified particles, and its correlation to particle properties and in vivo distribution. Eur. J. Pharm. Sci. 1:31–39 (1993).CrossRefGoogle Scholar
  27. 27.
    H. M. Chen, R. Langer, and D. A. Edwards. A film tension theory of phagocytosis. J. Colloid Interface Sci. 190:118–133 (1997).PubMedCrossRefGoogle Scholar
  28. 28.
    R. J. Helmke, V. F. German, and J. A. Mangos. A continuous alveolar macrophage cell-line—comparisons with freshly derived alveolar macrophages. In Vitro Cell Dev. Biol. Anim. 25:44–48 (1989).CrossRefGoogle Scholar
  29. 29.
    J. A. Steinkamp, J. S. Wilson, G. C. Saunders, and C. C. Stewart. Phagocytosis—flow cytometric quantitation with fluorescent microspheres. Science. 215:64–66 (1982).PubMedCrossRefGoogle Scholar
  30. 30.
    F. Schroeder, and D. A. Kinden. Measurement of phagocytosis using fluorescent latex beads. J. Biochem. Biophys. Methods. 8:15–27 (1983).PubMedCrossRefGoogle Scholar
  31. 31.
    A. Palecanda, J. Paulauskis, E. Al-Mutairi, A. Imrich, G. Z. Qin, H. Suzuki, T. Kodama, K. Tryggvason, H. Koziel, and L. Kobzik. Role of the scavenger receptor MARCO in alveolar macrophage binding of unopsonized environmental particles. J. Exp. Med. 189:1497–1506 (1999).PubMedCrossRefGoogle Scholar
  32. 32.
    G. J. Dougherty, and W. H. McBride. Macrophage Heterogeneity. J. Clin. Lab. Immun. 14:1–11 (1984).Google Scholar
  33. 33.
    I. Carr. The Macrophage: A Review of Ultrastructure and Function. Academic Press, London, 1973.Google Scholar
  34. 34.
    D. Cox, P. Chang, Q. Zhang, P. G. Reddy, G. M. Bokoch, and S. Greenberg. Requirements for both Rac1 and Cdc42 in membrane ruffling and phagocytosis in leukocytes. J. Exp. Med. 186:1487–1494 (1997).PubMedCrossRefGoogle Scholar
  35. 35.
    M. M. Myat, S. Anderson, L. A. H. Allen, and A. Aderem. MARCKS regulates membrane ruffling and cell spreading. Curr. Biol. 7:611–614 (1997).PubMedCrossRefGoogle Scholar
  36. 36.
    J. Israelchvili. Intermolecular and Surface Forces. Academic Press, San Diego, 1992.Google Scholar
  37. 37.
    E. M. V. Hoek, and G. K. Agarwal. Extended DLVO interactions between spherical particles and rough surfaces. J. Colloid Interface Sci. 298:50–58 (2006).PubMedCrossRefGoogle Scholar
  38. 38.
    W. J. Kowalski, W. P. Bahnfleth, and T. S. Whittam. Filtration of airborne microoorganisms: modeling and prediction. ASHRAE Trans. 105:4–17 (1999).Google Scholar
  39. 39.
    G. W. Burnett, and G. S. Schuster. Pathogenic microbiology. The C.V. Mosby Co., St. Louis, 1973.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Julie A. Champion
    • 1
  • Amanda Walker
    • 1
  • Samir Mitragotri
    • 1
  1. 1.Department of Chemical EngineeringUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations