Skip to main content

Advertisement

Log in

Understanding the Phagocytosis of Particles: the Key for Rational Design of Vaccines and Therapeutics

  • Review Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

A robust comprehension of phagocytosis is crucial for understanding its importance in innate immunity. A detailed description of the molecular mechanisms that lead to the uptake and clearance of endogenous and exogenous particles has helped elucidate the role of phagocytosis in health and infectious or autoimmune diseases. Furthermore, knowledge about this cellular process is important for the rational design and development of particulate systems for the administration of vaccines or therapeutics. Depending on these specific applications and the required biological responses, particles must be designed to encourage or avoid their phagocytosis and prolong their circulation time. Functionalization with specific polymers or ligands and changes in the size, shape, or surface of particles have important effects on their recognition and internalization by professional and nonprofessional phagocytes and have a major influence on their fate and safety. Here, we review the phagocytosis of particles intended to be used as carrier or delivery systems for vaccines or therapeutics, the cells involved in this process depending on the route of administration, and the strategies employed to obtain the most desirable particles for each application through the manipulation of their physicochemical characteristics. We also offer a view of the challenges and potential opportunities in the field and give some recommendations that we expect will enable the development of improved approaches for the rational design of these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Uribe-Querol E, Rosales C. Phagocytosis: our current understanding of a universal biological process. Front Immunol. 2020;11:1066. https://doi.org/10.3389/fimmu.2020.01066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lim JJ, Grinstein S, Roth Z. Diversity and versatility of phagocytosis: roles in innate immunity, tissue remodeling, and homeostasis. Front Cell Infect Microbiol. 2017;7:191. https://doi.org/10.3389/fcimb.2017.00191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jaumouillé V, Waterman CM. Physical constraints and forces involved in Phagocytosis. Front Immunol. 2020;11:1097. https://doi.org/10.3389/fimmu.2020.01097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gordon S. Phagocytosis: the legacy of Metchnikoff. Cell. 2016;166:1065–8. https://doi.org/10.1016/j.cell.2016.08.017.

    Article  CAS  PubMed  Google Scholar 

  5. Xu M, Chen Z, Chen K, Ma D, Chen L, DiPietro L. Phagocytosis of apoptotic endothelial cells reprograms macrophages in skin wounds. J Immunol Regen Med. 2021;12:100038. https://doi.org/10.1016/j.regen.2021.100038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Park SY, Kim IS. Engulfment signals and the phagocytic machinery for apoptotic cell clearance. Exp Mol Med. 2017;49(5):e331–10. https://doi.org/10.1038/emm.2017.52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Linnerz T, Hall CJ. The diverse roles of phagocytes during bacterial and fungal infections and sterile inflammation: lessons from zebrafish. Front Immunol. 2020;11:1094. https://doi.org/10.3389/fimmu.2020.01094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Han CZ, Juncadella IJ, Kinchen JM, Monica W, Klibanov AL, Dryden K, et al. Macrophages redirect phagocytosis by non-professional phagocytes and influence inflammation. Nature. 2016;539:570–4. https://doi.org/10.1038/nature20141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hirayama D, Iida T, Nakase H. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int J Mol Sci. 2018;19:92. https://doi.org/10.3390/ijms19010092.

    Article  CAS  Google Scholar 

  10. Navegantes KC, Souza Gomes R, Pereira PAT, Czaikoski PG, Azevedo CHM, Monteiro MC. Immune modulation of some autoimmune diseases: the critical role of macrophages and neutrophils in the innate and adaptive immunity. J Transl Med. 2017;15:36. https://doi.org/10.1186/s12967-017-1141-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lecoultre M, Dutoit V, Walker PR. Phagocytic function of tumor-associated macrophages as a key determinant of tumor progression control: a review. J Immunother Cancer. 2020;8:e001408. https://doi.org/10.1136/jitc-2020-001408.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Podleśny-Drabiniok A, Marcora E, Goate AM. Microglial Phagocytosis: a disease-associated process emerging from Alzheimer’s disease genetics. Trends Neurosci. 2020;43:965–79. https://doi.org/10.1016/j.tins.2020.10.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reddy P, Lent-Schochet D, Ramakrishnan N, McLaughlin M, Jialal I. Metabolic syndrome is an inflammatory disorder: a conspiracy between adipose tissue and phagocytes. Clin Chim Acta. 2019;496:35–44. https://doi.org/10.1016/j.cca.2019.06.019.

    Article  CAS  PubMed  Google Scholar 

  14. Ishidome T, Yoshida T, Hanayama R. Induction of live cell Phagocytosis by a specific combination of inflammatory stimuli. EBioMedicine. 2017;22:89–99. https://doi.org/10.1016/j.ebiom.2017.07.011.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li H, Tatematsu K, Somiya M, Iijima M, Kuroda S. Development of a macrophage-targeting and Phagocytosis-inducing bio-nanocapsule-based Nanocarrier for drug delivery. Acta Biomater. 2018;73:412–23. https://doi.org/10.1016/j.actbio.2018.04.023.

    Article  CAS  PubMed  Google Scholar 

  16. Ueno T, Yamamoto Y, Kawasaki K. Phagocytosis of microparticles increases responsiveness of macrophage-like cell lines U937 and THP-1 to bacterial lipopolysaccharide and lipopeptide. Sci Rep. 2021;11:6782. https://doi.org/10.1038/s41598-021-86202-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Patiño T, Soriano J, Barrios L, Ibáñez E, Nogués C. Surface modification of microparticles causes differential uptake responses in normal and tumoral human breast epithelial cells. Sci Rep. 2015;5:11371. https://doi.org/10.1038/srep11371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Inoue M, Sakamoto K, Suzuki A, Nakai S, Ando A, Shiraki Y, et al. Size and surface modification of silica nanoparticles affect the severity of lung toxicity by modulating endosomal ROS generation in macrophages. Part Fibre Toxicol. 2021;18:21. https://doi.org/10.1186/s12989-021-00415-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jiang L, Wang T, Webster T, Duan H, Qiu J, Zhao Z, et al. Intracellular disposition of chitosan nanoparticles in macrophages: intracellular uptake, exocytosis, and intercellular transport. 2017;6383–98. https://doi.org/10.2147/IJN.S142060

  20. Zhao Z, Ukidve A, Krishnan V, Mitragotri S. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv Drug Deliv Rev. 2019;143:3–21. https://doi.org/10.1016/j.addr.2019.01.002.

    Article  CAS  PubMed  Google Scholar 

  21. DeLeo FR, Quinn MT. Phagocytes (Innate Immunity). 4th ed. Encyclopedia of Microbiology. Elsevier Inc.; 2019. 496–505 p. https://doi.org/10.1016/B978-0-12-809633-8.90746-5

  22. Hofmann A, Putz F, Buttner-Herold M, Hecht M, Fietkau R, Distel LV. Increase in non-professional phagocytosis during the progression of cell cycle. PLoS One. 2021;16(2):e0246402. https://doi.org/10.1371/journal.pone.0246402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gottwald D, Putz F, Hohmann N, Büttner-Herold M, Hecht M, Fietkau R, et al. Role of tumor cell senescence in non-professional phagocytosis and cell-in-cell structure formation. BMC Mol and Cell Biol. 2020;21:79. https://doi.org/10.1186/s12860-020-00326-6.

    Article  CAS  Google Scholar 

  24. Sihombing MAEM, Safitri M, Zhou T, Wang L, McGinty S, Zhang H-J, et al. Unexpected role of nonimmune cells: amateur phagocytes. DNA Cell Biol. 2021;40:157–71. https://doi.org/10.1089/dna.2020.5647.

    Article  CAS  PubMed  Google Scholar 

  25. Shardlow E, Mold M, Exley C. The interaction of aluminium-based adjuvants with THP-1 macrophages in vitro: implications for cellular survival and systemic translocation. J Inorg Biochem. 2020;203:110915. https://doi.org/10.1016/j.jinorgbio.2019.11091526.

    Article  CAS  PubMed  Google Scholar 

  26. Riehl M, Harms M, Hanefeld A, Baleeiro RB, Walden P, Mäder K. Combining R-DOTAP and a particulate antigen delivery platform to trigger dendritic cell activation: formulation development and invitro interaction studies. Int J Pharm. 2017;532:37–46. https://doi.org/10.1016/j.ijpharm.2017.08.119.

    Article  CAS  PubMed  Google Scholar 

  27. Amin M, Mansourian M, Koning GA, Badiee A, Jaafari MR, Ten Hagen TLM. Development of a novel cyclic RGD peptide for multiple targeting approaches of liposomes to tumor region. J Control Release. 2015;220:308–15. https://doi.org/10.1016/j.jconrel.2015.10.039.

    Article  CAS  PubMed  Google Scholar 

  28. Boero E, Brinkman I, Juliet T, van Yperen E, van Strijp JAG, Rooijakkers SHM, et al. Use of flow cytometry to evaluate Phagocytosis of Staphylococcus aureus by human neutrophils. Front Immunol. 2021;12:635825. https://doi.org/10.3389/fimmu.2021.635825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gonzalez NA, Quintana JA, Silva SG, Mazariegos M, González A, Aleja D, et al. Phagocytosis imprints heterogeneity in tissue-resident macrophages. 2017;214:1281–96. https://doi.org/10.1084/jem.20161375.

    Article  CAS  Google Scholar 

  30. Okunnu BM, Berg RE. Neutrophils are more effective than monocytes at Phagosomal containment and killing of listeria monocytogenes. ImmunoHorizons. 2019;3:573–84. https://doi.org/10.4049/immunohorizons.1900065.

    Article  CAS  PubMed  Google Scholar 

  31. Hatano Y, Taniuchi S, Masuda M, Tsuji S, Ito T, Hasui M, et al. Phagocytosis of heat-killed Staphylococcus aureus by eosinophils: comparison with neutrophils. Apmis. 2009;117:115–23. https://doi.org/10.1111/j.1600-0463.2008.00022.x.

    Article  PubMed  Google Scholar 

  32. Narni-Mancinelli E, Soudja SMH, Crozat K, Dalod M, Gounon P, Geissmann F, et al. Inflammatory monocytes and neutrophils are licensed to kill during memory responses in vivo. PLoS Pathog. 2011;7(12):e1002457. https://doi.org/10.1371/journal.ppat.1002457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Santos SS, Carmo AM, Brunialti MKC, Machado FR, Azevedo LC, Assunção M, et al. Modulation of monocytes in septic patients: preserved phagocytic activity, increased ROS and NO generation, and decreased production of inflammatory cytokines. Intensive Care Med Exp. 2016;4:1–16. https://doi.org/10.1186/s40635-016-0078-1.

    Article  PubMed Central  Google Scholar 

  34. Tel J, Lambeck AJA, Cruz LJ, Tacken PJ, de Vries IJM, Figdor CG. Human Plasmacytoid dendritic cells phagocytose, process, and present exogenous particulate antigen. J Immunol. 2010;184:4276–83. https://doi.org/10.4049/jimmunol.0903286.

    Article  CAS  PubMed  Google Scholar 

  35. Casarrubios L, Gómez-Cerezo N, Feito MJ, Vallet-Regí M, Arcos D, Portolés MT. Incorporation and effects of mesoporous SiO 2 -CaO nanospheres loaded with ipriflavone on osteoblast/osteoclast cocultures. Eur J Pharm Biopharm. 2018;133:258–68. https://doi.org/10.1016/j.ejpb.2018.10.019.

    Article  CAS  PubMed  Google Scholar 

  36. Nishimura K, Shindo S, Movila A, Kayal R, Abdullah A, Savitri J, et al. TRAP-positive osteoclast precursors mediate ROS/NOdependent bactericidal activity via TLR4. Free Radic Biol Med. 2016;97:330–41. https://doi.org/10.1016/j.freeradbiomed.2016.06.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gao J, Ma X, Gu W, Fu M, An J, Xing Y. Novel functions of murine B1 cells: active phagocytic and microbicidal abilities. Eur J Immunol. 2012;42:982–92. https://doi.org/10.1002/eji.201141519.

    Article  CAS  PubMed  Google Scholar 

  38. Zhu Q, Zhang M, Shi M, Liu Y, Zhao Q, Wang W, et al. Human B cells have an active phagocytic capability and undergo immune activation upon phagocytosis of Mycobacterium tuberculosis. Immunobiology. 2016;221:558–67. https://doi.org/10.1016/j.imbio.2015.12.003.

    Article  CAS  PubMed  Google Scholar 

  39. Martínez-Riaño A, Bovolenta ER, Mendoza P, Oeste CL, Martín-bermejo MJ, Bovolenta P, et al. Antigen phagocytosis by B cells is required for a potent humoral response. 2018;19(9):e46016. https://doi.org/10.15252/embr.201846016.

    Article  CAS  Google Scholar 

  40. Seeberg JC, Loibl M, Moser F, Schwegler M, Büttner-Herold M, Daniel C, et al. Non-professional phagocytosis: a general feature of normal tissue cells. Sci Rep. 2019;9:1–8. https://doi.org/10.1038/s41598-019-48370-3.

    Article  CAS  Google Scholar 

  41. Bertuzzi M, Hayes GE, Bignell EM. Microbial uptake by the respiratory epithelium: outcomes for host and pathogen. FEMS Microbiol Rev. 2019;43:145–61. https://doi.org/10.1093/femsre/fuy045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dean P, Quitard S, Bulmer DM, Roe AJ, Kenny B. Cultured enterocytes internalise bacteria across their basolateral surface for, pathogen-inhibitable, trafficking to the apical compartment. Sci Rep. 2015;5:17359. https://doi.org/10.1038/srep17359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Strobel M, Pförtner H, Tuchscherr L, Völker U, Schmidt F, Kramko N, et al. Post-invasion events after infection with Staphylococcus aureus are strongly dependent on both the host cell type and the infecting S. aureus strain. Clin Microbiol Infect. 2016;22:799–809. https://doi.org/10.1016/j.cmi.2016.06.020.

    Article  CAS  PubMed  Google Scholar 

  44. Günther J, Seyfert HM. The first line of defence: insights into mechanisms and relevance of phagocytosis in epithelial cells. Semin Immunopathol. 2018;40:555–65. https://doi.org/10.1007/s00281-018-0701-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ando H, Yoshimoto S, Yoshida M, Shimoda N, Tadokoro R, Kohda H, et al. Dermal fibroblasts internalize phosphatidylserine-exposed secretory melanosome clusters and apoptotic melanocytes. Int J Mol Sci. 2020;21:1–14. https://doi.org/10.3390/ijms21165789.

    Article  CAS  Google Scholar 

  46. Romana-Souza B, Dipietro LA, Chen L, Leonardo TR. Dermal fibroblast phagocytosis of apoptotic cells: A novel pathway for wound resolution. 2021;35(4):e21443. https://doi.org/10.1096/fj.202002078R.

    Article  CAS  Google Scholar 

  47. Schwegler M, Wirsing AM, Dollinger AJ, Abendroth B, Putz F, Fietkau R, et al. Clearance of primary necrotic cells by non-professional phagocytes. Biol Cell. 2015;107:372–87. https://doi.org/10.1111/boc.201400090.

    Article  CAS  PubMed  Google Scholar 

  48. Gordon S. Phagocytosis: an immunobiologic process immunity. 2016;44:463–75. https://doi.org/10.1016/j.immuni.2016.02.026.

    Article  CAS  PubMed  Google Scholar 

  49. Suri S, Ruan G, Winter J, Schmidt CE. Chapter I.2.19. Microparticles and Nanoparticles. Third Edit. Biomaterials Science: An Introduction to Materials: Third Edition. Elsevier; 2013. 360–388 p. https://doi.org/10.1016/B978-0-08-087780-8.00034-6.

  50. Ståhl A, Johansson K, Mossberg M, Kahn R, Karpman D. Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatr Nephrol. 2019;34:11–30. https://doi.org/10.1007/s00467-017-3816-z.

    Article  PubMed  Google Scholar 

  51. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018;9:1050–74. https://doi.org/10.3762/bjnano.9.98.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Powell JJ, Faria N, Thomas-McKay E, Pele LC. Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J Autoimmun. 2010;34:J226–33. https://doi.org/10.1016/j.jaut.2009.11.006.

    Article  CAS  PubMed  Google Scholar 

  53. Amin MK, Boateng JS. Comparison and process optimization of PLGA, chitosan and silica nanoparticles for potential oral vaccine delivery. Ther Deliv. 2019;10:493–514. https://doi.org/10.4155/tde-2019-0038.

    Article  CAS  PubMed  Google Scholar 

  54. Shi Z, Zhou Y, Fan T, Lin Y, Zhang H, Mei L. Inorganic nano-carriers based smart drug delivery systems for tumor therapy. Smart Mater Med. 2020;1:32–47. https://doi.org/10.1016/j.smaim.2020.05.002.

    Article  Google Scholar 

  55. Fu C, Liu T, Li L, Liu H, Chen D, Tang F. The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes. Biomaterials. 2013;34:2565–75. https://doi.org/10.1016/j.biomaterials.2012.12.043.

    Article  CAS  PubMed  Google Scholar 

  56. Gulla SK, Rao BR, Moku G, Jinka S, Nimmu NV, Khalid S, et al. In vivo targeting of DNA vaccines to dendritic cells using functionalized gold nanoparticles. Biomater Sci. 2019;7:773–88. https://doi.org/10.1039/C8BM01272e.

    Article  CAS  PubMed  Google Scholar 

  57. Song S, Gui L, Feng Q, Taledaohan A, Li Y, Wang W, et al. Tat-modified gold nanoparticles enhance the antitumor activity of PAD4 inhibitors. Int J Nanomedicine. 2020;15:6659–71. https://doi.org/10.2147/IJN.S255546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Firdaus F, Khalil Z, Capon R, Skwarczynski M, Toth I, Hussein W. Model liposomal delivery system for drugs and vaccines. Vaccine Res Open. 2020;1(107-113). https://doi.org/10.17140/VROJ-1-117.

  59. Tada R, Suzuki H, Takahashi S, Negishi Y, Kiyono H, Kunisawa J, et al. Nasal vaccination with pneumococcal surface protein a in combination with cationic liposomes consisting of DOTAP and DC-chol confers antigen-mediated protective immunity against Streptococcus pneumoniae infections in mice. Int Immunopharmacol. 2018;61:385–93. https://doi.org/10.1016/j.intimp.2018.06.027.

    Article  CAS  PubMed  Google Scholar 

  60. Cvjetinović Đ, Prijović Ž, Janković D, Radović M, Mirković M, Milanović Z, et al. Bioevaluation of glucose-modified liposomes as a potential drug delivery system for cancer treatment using 177-Lu radiotracking. J Control Release. 2021;332:301–11. https://doi.org/10.1016/j.jconrel.2021.03.006.

    Article  CAS  PubMed  Google Scholar 

  61. Rodríguez-Serrano F, Mut-Salud N, Cruz-Bustos T, Gomez-Samblas M, Carrasco E, Garrido J, et al. Functionalized immunostimulating complexes with protein a via lipid vinyl sulfones to deliver cancer drugs to trastuzumab-resistant HER2-overexpressing breast cancer cells. Int J Nanomedicine. 2016;11:4777–85. https://doi.org/10.2147/IJN.S112560.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cibulski S, Teixeira TF, Varela APM, de Lima MF, Casanova G, Nascimento YM, et al. IMXQB-80: a Quillaja brasiliensis saponin-based nanoadjuvant enhances Zika virus specific immune responses in mice. Vaccine. 2021;39:571–9. https://doi.org/10.1016/j.vaccine.2020.12.004.

    Article  CAS  PubMed  Google Scholar 

  63. Moran MC, Dominguez MP, Bence AR, Rodriguez MG, Goldbaum FA, Zylberman V, et al. Evaluation of the efficacy of polymeric antigen BLSOmp31 formulated in a new cage-like particle adjuvant (ISPA) administered by parenteral or mucosal routes against Brucella ovis in BALB/c mice. Res Vet Sci. 2022;145:29–39. https://doi.org/10.1016/j.rvsc.2022.02.001.

    Article  CAS  PubMed  Google Scholar 

  64. Nooraei S, Bahrulolum H, Hoseini ZS, Katalani C, Hajizade A, Easton AJ, et al. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J Nanobiotechnol. 2021;19:1–27. https://doi.org/10.1186/s12951-021-00806-7.

    Article  CAS  Google Scholar 

  65. Ji M, Zhu J, Xiu XX, Qun LD, Wang B, Yu Z, et al. A novel rapid modularized hepatitis B core virus-like particle-based platform for personalized cancer vaccine preparation via fixed-point coupling. Nanomedicine Nanotechnology, Biol Med. 2020;28:102223. https://doi.org/10.1016/j.nano.2020.102223.

    Article  CAS  Google Scholar 

  66. Shan W, Zhang D, Wu Y, Lv X, Hu B, Zhou X, et al. Modularized peptides modified HBc virus-like particles for encapsulation and tumor-targeted delivery of doxorubicin. Nanomedicine Nanotechnology, Biol Med. 2018;14:725–34. https://doi.org/10.1016/j.nano.2017.12.002.

    Article  CAS  Google Scholar 

  67. Jiao YY, Fu YH, Yan YF, Hua Y, Ma Y, Zhang XJ, et al. A single intranasal administration of virus-like particle vaccine induces an efficient protection for mice against human respiratory syncytial virus. Antivir Res. 2017;144:57–69. https://doi.org/10.1016/j.antiviral.2017.05.005.

    Article  CAS  PubMed  Google Scholar 

  68. Jana P, Shyam M, Singh S, Jayaprakash V, Dev A. Biodegradable polymers in drug delivery and oral vaccination. Eur Polym J. 2021;142:110155. https://doi.org/10.1016/j.eurpolymj.2020.110155.

    Article  CAS  Google Scholar 

  69. Dhas N, Mehta T. Intranasal delivery of chitosan decorated PLGA core /shell nanoparticles containing flavonoid to reduce oxidative stress in the treatment of Alzheimer’s disease. J Drug Deliv Sci Technol. 2021;61:102242. https://doi.org/10.1016/j.jddst.2020.102242.

    Article  CAS  Google Scholar 

  70. Chen X, Bremner DH, Ye Y, Lou J, Niu S, Zhu L. A dual-prodrug nanoparticle based on chitosan oligosaccharide for enhanced tumor-targeted drug delivery. Colloids Surfaces A: Physicochem Eng Asp. 2021;619:126512. https://doi.org/10.1016/j.colsurfa.2021.126512.

    Article  CAS  Google Scholar 

  71. Chen N, Gallovic MD, Tiet P, Ting JPY, Ainslie KM, Bachelder EM. Investigation of tunable acetalated dextran microparticle platform to optimize M2e-based influenza vaccine efficacy. J Control Release. 2018;289:114–24. https://doi.org/10.1016/j.jconrel.2018.09.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Guillén D, Moreno-Mendieta S, Pérez R, Espitia C, Sánchez S, Rodríguez-Sanoja R. Starch granules as a vehicle for the oral administration of immobilized antigens. Carbohydr Polym. 2014;112:210–5. https://doi.org/10.1016/j.carbpol.2014.05.089.

    Article  CAS  PubMed  Google Scholar 

  73. Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, et al. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release. 2021;332:312–36. https://doi.org/10.1016/j.jconrel.2021.02.031.

    Article  CAS  PubMed  Google Scholar 

  74. Mei L, Rao J, Liu Y, Li M, Zhang Z, He Q. Effective treatment of the primary tumor and lymph node metastasis by polymeric micelles with variable particle sizes. J Control Release. 2018;292:67–77. https://doi.org/10.1016/j.jconrel.2018.04.053.

    Article  CAS  PubMed  Google Scholar 

  75. Maravajjala KS, Swetha KL, Sharma S, Padhye T, Roy A. Development of a size-tunable paclitaxel micelle using a microfluidic-based system and evaluation of its invitro efficacy and intracellular delivery. J Drug Deliv Sci Technol. 2020;60:102041. https://doi.org/10.1016/j.jddst.2020.102041.

    Article  CAS  Google Scholar 

  76. Li Y, Li M, Gong T, Zhang Z, Sun X. Antigen-loaded polymeric hybrid micelles elicit strong mucosal and systemic immune responses after intranasal administration. J Control Release. 2017;262:151–8. https://doi.org/10.1016/j.jconrel.2017.07.034.

    Article  CAS  PubMed  Google Scholar 

  77. Suzuki K, Yoshizaki Y, Horii K, Murase N, Kuzuya A, Ohya Y. Preparation of hyaluronic acid-coated polymeric micelles for nasal vaccine delivery. Biomater Sci. 2022; https://doi.org/10.1039/d1bm01985f.

  78. Gao Y, Yu Y. Macrophage uptake of Janus particles depends upon Janus balance. Langmuir. 2015;31:2833–8. https://doi.org/10.1021/la504668c.

    Article  CAS  PubMed  Google Scholar 

  79. Fan JB, Song Y, Liu H, Lu Z, Zhang F, Liu H, et al. A general strategy to synthesize chemically and topologically anisotropic Janus particles. Sci Adv. 2017;3:1–9. https://doi.org/10.1126/sciadv.1603203.

    Article  CAS  Google Scholar 

  80. Su H, Hurd Price CA, Jing L, Tian Q, Liu J, Qian K. Janus particles: design, preparation, and biomedical applications. Mater Today Bio. 2019;4:100033. https://doi.org/10.1016/j.mtbio.2019.100033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu L, Yao W, Xie X, Gao J, Lu X. pH-sensitive dual drug loaded janus nanoparticles by oral delivery for multimodal analgesia. J Nanobiotechnol. 2021;19:235. https://doi.org/10.1186/s12951-021-00974-6.

    Article  CAS  Google Scholar 

  82. Baranov MV, Olea RA, van den Bogaart G. Chasing uptake: super-resolution microscopy in endocytosis and Phagocytosis. Trends Cell Biol. 2019;29:727–39. https://doi.org/10.1016/j.tcb.2019.05.006.

    Article  PubMed  Google Scholar 

  83. Rennick JJ, Johnston APR, Parton RG. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat Nanotechnol. 2021;16:266–76. https://doi.org/10.1038/s41565-021-00858-8.

    Article  CAS  PubMed  Google Scholar 

  84. Li Z, Wang J, Wei Q, Qi Z, Zhou L, Li J. In silico insights into the receptor-mediated endocytosis of virus-like nanoparticles. Chem Phys Lett. 2022;790:139360. https://doi.org/10.1016/j.cplett.2022.139360.

    Article  CAS  Google Scholar 

  85. Manzanares D, Ceña V. Endocytosis: the nanoparticle and submicron nanocompounds gateway into the cell. Pharmaceutics. 2020;12:371. https://doi.org/10.3390/pharmaceutics12040371.

    Article  CAS  PubMed Central  Google Scholar 

  86. Ju Y, Guo H, Edman M, Hamm-Alvarez SF. Application of advances in endocytosis and membrane trafficking to drug delivery. Adv Drug Deliv Rev. 2020;157:118–41. https://doi.org/10.1016/j.addr.2020.07.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jin J, Shen Y, Zhang B, Deng R, Huang D, Lu T, et al. In situ exploration of characteristics of macropinocytosis and size range of internalized substances in cells by 3D-structured illumination microscopy. Int J Nanomedicine. 2018;13:5321–33. https://doi.org/10.2147/IJN.S171973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lin XP, Mintern JD, Gleeson PA. Macropinocytosis in different cell types: similarities and differences. Membranes (Basel). 2020;10:177. https://doi.org/10.3390/membranes10080177.

    Article  CAS  Google Scholar 

  89. Zhou S, Huang Y, Chen Y, Liu S, Xu M, Jiang T, et al. Engineering ApoE3-incorporated biomimetic nanoparticle for efficient vaccine delivery to dendritic cells via macropinocytosis to enhance cancer immunotherapy. Biomaterials. 2020;235:119795. https://doi.org/10.1016/j.biomaterials.2020.119795.

    Article  CAS  PubMed  Google Scholar 

  90. Lunov O, Syrovets T, Loos C, Beil J, Delacher M, Landfester K, et al. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a Monocytic cell line. ACS Nano. 2011;5:1657–69. https://doi.org/10.1021/nn2000756.

    Article  CAS  PubMed  Google Scholar 

  91. Schulz D, Severin Y, Riccardo V, Zanotelli T, Bodenmiller B. In-depth characterization of monocyte-derived macrophages using a mass cytometry-based Phagocytosis assay. Sci Rep. 2019;9:1925. https://doi.org/10.1038/s41598-018-38127-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jaumouillé V, Grinstein S. Molecular mechanisms of phagosome formation. Microbiol Spectr. 2016;4:1–18. https://doi.org/10.1128/microbiolspec.MCHD-0013-2015.

    Article  CAS  Google Scholar 

  93. Tertrais M, Bigot C, Martin E, Poincloux R, Labrousse A, Maridonneau-Parini I. Phagocytosis is coupled to the formation of phagosome-associated podosomes and a transient disruption of podosomes in human macrophages. Eur J Cell Biol. 2021;100:151161. https://doi.org/10.1016/j.ejcb.2021.151161.

    Article  CAS  PubMed  Google Scholar 

  94. Acharya D, Rui X, Li L, Heineman RE, Harrison RE. Complement Receptor-Mediated Phagocytosis Induces Proinflammatory Cytokine Production in Murine Macrophages 2020;10:3049. https://doi.org/10.3389/fimmu.2019.03049.

  95. Walbaum S, Ambrosy B, Schütz P, Bachg A, Horsthemke M, Leusen JHW, et al. Complement receptor 3 mediates both sinking phagocytosis and phagocytic cup formation via distinct mechanisms. J Biol Chem. 2021;296:100256. https://doi.org/10.1016/j.jbc.2021.100256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Torres-Gomez A, Cabañas C, Lafuente EM. Phagocytic Integrins: activation and signaling. Front Immunol. 2020;11:1–10. https://doi.org/10.3389/fimmu.2020.00738.

    Article  CAS  Google Scholar 

  97. Tang Z, Davidson D, Li R, Zhong MC, Qian J, Chen J, et al. Inflammatory macrophages exploit unconventional pro-phagocytic integrins for phagocytosis and anti-tumor immunity. Cell Rep. 2021;37:110111. https://doi.org/10.1016/j.celrep.2021.110111.

    Article  CAS  PubMed  Google Scholar 

  98. Gilberti RM, Knecht DA. Macrophages phagocytose nonopsonized silica particles using a unique microtubule-dependent pathway. Mol Biol Cell. 2015;26:518–29. https://doi.org/10.1091/mbc.E14-08-1301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bi D, Zhou R, Cai N, Lai Q, Han Q, Peng Y, et al. Alginate enhances toll-like receptor 4-mediated phagocytosis by murine RAW264.7 macrophages. Int J Biol Macromol. 2017;105:1446–54. https://doi.org/10.1016/j.ijbiomac.2017.07.129.

    Article  CAS  PubMed  Google Scholar 

  100. Liu S, Hao C, Bao L, Zhao D, Zhang H, Hou J. Silica particles mediate phenotypic and functional alteration of dendritic cells and induce Th2 cell polarization. Front Immunol. 2019;10:787. https://doi.org/10.3389/fimmu.2019.00787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bancos S, Stevens D, Tyner K. Effect of silica and gold nanoparticles on macrophage proliferation , activation markers , cytokine production, and phagocytosis in vitro. Int J Nanomedicine. 2015;10:183–206. https://doi.org/10.2147/IJN.S72580.

    Article  CAS  PubMed  Google Scholar 

  102. Rodponthukwaji K, Saengruengrit C, Tummamunkong P, Leelahavanichakul A, Ritprajak P, Insin N. Facile synthesis of magnetic silica-mannan nanocomposites for enhancement in internalization and immune response of dendritic cells. Mater Today Chem. 2021;20:100417. https://doi.org/10.1016/j.mtchem.2020.100417.

    Article  CAS  Google Scholar 

  103. Rodriguez-Fernandez S, Pujol-Autonell I, Brianso F, Perna-Barrull D, Cano-Sarabia M, Garcia-Jimeno S, et al. Phosphatidylserine-liposomes promote tolerogenic features on dendritic cells in human type 1 diabetes by apoptotic mimicry. Front Immunol. 2018;9:253. https://doi.org/10.3389/fimmu.2018.00253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Feng F, Hao H, Zhao J, Li Y, Zhang Y, Li R, et al. Shell-mediated phagocytosis to reshape viral-vectored vaccine-induced immunity. Biomaterials [Internet]. 2021;276:121062. https://doi.org/10.1016/j.biomaterials.2021.121062.

    Article  CAS  Google Scholar 

  105. Brandhonneur N, Primault R, Le PM, Le P. Specific and non-specific phagocytosis of ligand-grafted PLGA microspheres by macrophages. Eur J Pharm Sci. 2009;6:474–85. https://doi.org/10.1016/j.ejps.2008.11.013.

    Article  CAS  Google Scholar 

  106. Anselmo AC, Mitragotri S. Nanoparticles in the clinic: An update. Bioeng Transl Med. 2019;4:1–16. https://doi.org/10.1002/btm2.10143.

    Article  Google Scholar 

  107. Guo M, Chen H, Zhang C, Zhang G, Wang Y, Li P, et al. Probing the particle shape effects on the biodistribution and antihyperlipidemic efficiency for oral lovastatin nanocrystals. J Mol Liq. 2021;324:114700. https://doi.org/10.1016/j.molliq.2020.114700.

    Article  CAS  Google Scholar 

  108. Ozcicek I, Aysit N, Cakici C, Aydeger A. The effects of surface functionality and size of gold nanoparticles on neuronal toxicity, apoptosis, ROS production and cellular/suborgan biodistribution. Mater Sci Eng C. 2021;128:112308. https://doi.org/10.1016/j.msec.2021.112308.

    Article  CAS  Google Scholar 

  109. Anselmo AC, Zhang M, Kumar S, Vogus DR, Menegatti S, Helgeson ME, et al. Elasticity of nanoparticles influences their blood circulation, Phagocytosis, endocytosis, and targeting. ACS Nano. 2015;9:3169–77. https://doi.org/10.1021/acsnano.5b00147.

    Article  CAS  PubMed  Google Scholar 

  110. Xue W, Liu Y, Zhang N, Yao Y, Ma P, Wen H, et al. Effects of core size and PEG coating layer of iron oxide nanoparticles on the distribution and metabolism in mice. Int J Nanomedicine. 2018;13:5719–31. https://doi.org/10.2147/IJN.S165451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Baranov MV, Kumar M, Sacanna S, Thutupalli S, van den Bogaart G. Modulation of immune responses by particle size and shape. Front Immunol. 2021;11:1–23. https://doi.org/10.3389/fimmu.2020.607945.

    Article  CAS  Google Scholar 

  112. Casey LM, Kakade S, Decker JT, Rose JA, Deans K, Shea LD, et al. Cargo-less nanoparticles program innate immune cell responses to toll-like receptor activation. Biomaterials. 2020;218:119333. https://doi.org/10.1016/j.biomaterials.2019.119333.

    Article  CAS  Google Scholar 

  113. Chikaura H, Nakashima Y, Fujiwara Y, Komohara Y, Takeya M, Nakanishi Y. Effect of particle size on biological response by human monocyte-derived macrophages. Biosurface and Biotribology. 2016;2:18–25. https://doi.org/10.1016/j.bsbt.2016.02.003.

    Article  Google Scholar 

  114. Dalzon B, Torres A, Reymond S, Gallet B, Saint-antonin F, Collin-faure V, et al. Influences of nanoparticles characteristics on the cellular responses: the example of iron oxide and macrophages. Nanomaterials. 2020;10:266. https://doi.org/10.3390/nano10020266.

    Article  CAS  PubMed Central  Google Scholar 

  115. Hoshyar N, Gray S, HH& BG. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 2016;11:673–92. https://doi.org/10.2217/nnm.16.5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Montel L, Pinon L, Fattaccioli J. A multiparametric and high-throughput assay to quantify the influence of target size on Phagocytosis. Biophys J. 2019;117(3):408–19. https://doi.org/10.1016/j.bpj.2019.06.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Garapaty A, Champion JA. Tunable particles alter macrophage uptake based on combinatorial effects of physical properties. Bioeng Transl Med. 2016;2:92–101. https://doi.org/10.1002/btm2.10047.

    Article  CAS  Google Scholar 

  118. Tabei Y, Sugino S, Eguchi K, Tajika M, Abe H, Nakajima Y, et al. Effect of calcium carbonate particle shape on phagocytosis and pro-inflammatory response in differentiated THP-1 macrophages. Biochem Biophys Res Commun. 2017;490:499–505. https://doi.org/10.1016/j.bbrc.2017.06.069.

    Article  CAS  PubMed  Google Scholar 

  119. Wendler A, James N, Jones MH, Pernstich C. Phagocytosed Polyhedrin-cytokine Cocrystal nanoparticles provide sustained secretion of bioactive cytokines from macrophages. BioDesign Res. 2021;2021:1–12. https://doi.org/10.34133/2021/9816485.

    Article  Google Scholar 

  120. Friess F, Roch T, Seifert B, Lendlein A, Wischke C. Phagocytosis of spherical and ellipsoidal micronetwork colloids from crosslinked poly(ε-caprolactone). Int J Pharm. 2019;567:118461. https://doi.org/10.1016/j.ijpharm.2019.118461.

    Article  CAS  PubMed  Google Scholar 

  121. Kinnear C, Moore TL, Rodriguez-Lorenzo L, Rothen-Rutishauser B, Petri-Fink A. Form follows function: nanoparticle shape and its implications for Nanomedicine. Chem Rev. 2017;117:11476–521. https://doi.org/10.1021/acs.chemrev.7b00194.

    Article  CAS  PubMed  Google Scholar 

  122. Wang J, Li Q, Xue J, Chen W, Zhang R, Xing D. Shape matters: morphologically biomimetic particles for improved drug delivery. Chem Eng J. 2021;410:127849. https://doi.org/10.1016/j.cej.2020.127849.

    Article  CAS  Google Scholar 

  123. Vorselen D, Labitigan RLD, Theriot JA. A mechanical perspective on phagocytic cup formation. Curr Opin Cell Biol. 2020;66:112–22. https://doi.org/10.1016/j.ceb.2020.05.011.

    Article  CAS  PubMed  Google Scholar 

  124. Sadhu R, Barger S, Penič S, Iglič A, Krendel M, Gauther N, et al. Theoretical model of efficient phagocytosis driven by curved membrane proteins and active cytoskeleton forces bioRxiv preprint 2022. https://doi.org/10.1101/2022.01.04.474893.

  125. Paul D, Achouri S, Yoon YZ, Herre J, Bryant CE, Cicuta P. Phagocytosis dynamics depends on target shape. Biophys J. 2013;105(5):1143–50. https://doi.org/10.1016/j.bpj.2013.07.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Dasgupta S, Auth T, Gompper G. Shape and orientation matter for the cellular uptake of nonspherical particles. Nano Lett. 2014;14(2):687–93. https://doi.org/10.1021/nl403949h.

    Article  CAS  PubMed  Google Scholar 

  127. Richards DM, Endres RG. Target shape dependence in a simple model of receptor-mediated endocytosis and phagocytosis. Proc Natl Acad Sci U S A. 2016;113(22):6113–8. https://doi.org/10.1073/pnas.1521974113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Vorselen D, Theriot J. Deformable microparticles as reporters for probing cellular forces in Phagocytosis. Biophysj. 2018;114:651a. https://doi.org/10.1016/j.bpj.2017.11.3518.

    Article  Google Scholar 

  129. Vorselen D, Wang Y, de Jesus MM, Shah PK, Footer MJ, Huse M, et al. Microparticle traction force microscopy reveals subcellular force exertion patterns in immune cell–target interactions. Nat Commun. 2020;11. https://doi.org/10.1038/s41467-019-13804-z.

  130. Wang S, Guo H, Li Y, Li X. Penetration of nanoparticles across a lipid bilayer: effects of particle stiffness and surface hydrophobicity. Nanoscale. 2019;11:4044–52. https://doi.org/10.1039/C8NR09381D.

    Article  PubMed  Google Scholar 

  131. Cifuentes-Rius A, Desai A, Yuen D, Johnston APR, Voelcker NH. Inducing immune tolerance with dendritic cell-targeting nanomedicines. Nat Nanotechnol. 2021;16:37–46. https://doi.org/10.1038/s41565-020-00810-2.

    Article  CAS  PubMed  Google Scholar 

  132. Du X, Wang J, Iqbal S, Li H, Cao Z, Wang Y, et al. The effect of surface charge on Oral absorption of polymeric nanoparticles. Biomater Sci. 2018;6:642–50. https://doi.org/10.1039/c7bm01096f.

    Article  CAS  PubMed  Google Scholar 

  133. Jeon S, Clavadetscher J, Lee D, Chankeshwara SV, Bradley M, Cho W. Surface charge-dependent cellular uptake of polystyrene nanoparticles. Nanomaterials (Basel). 2018;8:1–11. https://doi.org/10.3390/nano8121028.

    Article  CAS  Google Scholar 

  134. Myerson JW, Patel PN, Rubey KM, Zamora ME, Zaleski MH, Habibi N, et al. Supramolecular arrangement of protein in nanoparticle structures predicts nanoparticle tropism for neutrophils in acute lung inflammation. Nat Nanotechnol. 2022;17:86–97. https://doi.org/10.1038/s41565-021-00997-y.

    Article  CAS  PubMed  Google Scholar 

  135. Hwang S, Thielbeer F, Jeong J, Han Y, Sunay V, Bradley M, et al. Dual contribution of surface charge and protein- binding affinity to the cytotoxicity of polystyrene nanoparticles in nonphagocytic A549 cells and phagocytic THP-1 cells. J Toxicol Environ Health A. 2016;79:925–37. https://doi.org/10.1080/15287394.2016.1207117.

    Article  CAS  PubMed  Google Scholar 

  136. Maghrebi S, Jambhrunkar M, Joyce P, Prestidge CA. Engineering PLGA-lipid hybrid microparticles for enhanced macrophage uptake. ACS Appl Bio Mater. 2020;3:4159–67. https://doi.org/10.1021/acsabm.0c00251.

    Article  CAS  PubMed  Google Scholar 

  137. Zhang D, Wei L, Zhong M, Xiao L, Li HW, Wang J. The morphology and surface charge-dependent cellular uptake efficiency of up conversion nanostructures revealed by single-particle optical microscopy. Chem Sci. 2018;9:5260–9. https://doi.org/10.1039/C8SC01828F.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sharma P, Sen D, Neelakantan V, Shankar V, Jhunjhunwala S. Disparate effects of PEG or albumin based surface modification on the uptake of nano- and micro-particles. Biomater Sci. 2019;7:1411–21. https://doi.org/10.1039/C8BM01545G.

    Article  CAS  PubMed  Google Scholar 

  139. Xiao Y, Xu W, Komohara Y, Fujiwara Y, Hirose H, Futaki S, et al. Effect of surface modifications on cellular uptake of gold Nanorods in human primary cells and established cell lines. ACS Omega. 2020;5:32744–52. https://doi.org/10.1021/acsomega.0c05162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Safari H, Kelley WJ, Saito E, Kaczorowski N, Carethers L, Shea LD, et al. Neutrophils preferentially phagocytose elongated particles-An opportunity for selective targeting in acute inflammatory diseases. Sci Adv. 2020;6:eaba1474. https://doi.org/10.1126/sciadv.aba1474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Fromen CA, Kelley WJ, Fish MB, Adili R, Noble J, Hoenerhoff MJ, et al. Neutrophil-particle interactions in blood circulation drive particle clearance and Alter neutrophil responses in acute inflammation. ACS Nano. 2017;11:10797–807. https://doi.org/10.1021/acsnano.7b03190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Doolaanea AA, Mansor NI, Mohd Nor NH, Mohamed F. Cellular uptake of Nigella sativa oil-PLGA microparticle by PC-12 cell line. J Microencapsul. 2014;31:600–8. https://doi.org/10.3109/02652048.2014.898709.

    Article  CAS  PubMed  Google Scholar 

  143. Fortuni B, Inose T, Ricci M, Fujita Y, Van Zundert I, Masuhara A, et al. Polymeric engineering of nanoparticles for highly efficient multifunctional drug delivery systems. Sci Rep. 2019;9:1–13. https://doi.org/10.1038/s41598-019-39107-3.

    Article  CAS  Google Scholar 

  144. Getts DR, Terry RL, Getts MT, Deffrasnes C, Müller M, Van VC, et al. Therapeutic inflammatory monocyte modulation using immune-modifying microparticles. Nanobiology. 2014;6:1–14. https://doi.org/10.1126/scitranslmed.3007563.

    Article  CAS  Google Scholar 

  145. Saito E, Kuo R, Pearson RM, Gohel N, Cheung B, King NJC, et al. Designing drug-free biodegradable nanoparticles to modulate inflammatory monocytes and neutrophils for ameliorating inflammation. J Control Release. 2019;300:185–96. https://doi.org/10.1016/j.jconrel.2019.02.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mathaes R, Winter G, Besheer A, Engert J. Influence of particle geometry and PEGylation on phagocytosis of particulate carriers. Int J Pharm. 2014;465:159–64. https://doi.org/10.1016/j.ijpharm.2014.02.037.

    Article  CAS  PubMed  Google Scholar 

  147. Chu KS, Schorzman AN, Finniss MC, Bowerman CJ, Peng L, Luft JC, et al. Nanoparticle drug loading as a design parameter to improve docetaxel pharmacokinetics and efficacy. Biomaterials. 2013;34:8424–9. https://doi.org/10.1016/j.biomaterials.2013.07.038.

    Article  CAS  PubMed  Google Scholar 

  148. Truong N, Black SK, Shaw J, Scotland BL, Pearson RM. Microfluidic-generated immunomodulatory nanoparticles and formulation-dependent effects on lipopolysaccharide-induced macrophage inflammation. AAPS J. 2022;24:6. https://doi.org/10.1208/s12248-021-00645-2.

    Article  CAS  Google Scholar 

  149. Nicolete R, Santos DFD, Faccioli LH. The uptake of PLGA micro or nanoparticles by macrophages provokes distinct in vitro inflammatory response. Int Immunopharmacol. 2011;11:1557–63. https://doi.org/10.1016/j.intimp.2011.05.014.

    Article  CAS  PubMed  Google Scholar 

  150. Alqahtani MS, Syed R, Alshehri M. Size-dependent phagocytic uptake and immunogenicity of gliadin nanoparticles. Polymers (Basel). 2020;12:1–13. https://doi.org/10.3390/polym12112576.

    Article  CAS  Google Scholar 

  151. Chen X, Yan Y, Müllner M, Ping Y, Cui J, Kempe K, et al. Shape-dependent activation of cytokine secretion by polymer capsules in human monocyte-derived macrophages. Biomacromolecules. 2016;17:1205–12. https://doi.org/10.1021/acs.biomac.6b00027.

    Article  CAS  PubMed  Google Scholar 

  152. Lebre F, Sridharan R, Sawkins MJ, Kelly DJ, O’Brien FJ, Lavelle EC. The shape and size of hydroxyapatite particles dictate inflammatory responses following implantation. Sci Rep. 2017;7:1–13. https://doi.org/10.1038/s41598-017-03086-0.

    Article  CAS  Google Scholar 

  153. Qie Y, Yuan H, von Roemeling CA, Chen Y, Liu X, Shih KD, et al. Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes. Sci Rep. 2016;6:1–10. https://doi.org/10.1038/srep26269.

    Article  CAS  Google Scholar 

  154. Bhattacherjee A, Daskhan GC, Bains A, Watson AES, Eskandari-Sedighi G, St. Laurent CD, et al. Increasing phagocytosis of micoglia by targeting CD33 with liposomes displaying glycan ligands. J Control Release. 2021;338:680–93. https://doi.org/10.1016/j.jconrel.2021.09.010.

    Article  CAS  PubMed  Google Scholar 

  155. Dong Z, Liu W, Liu K, Lu Y, Wu W, Qi J, et al. Effects on immunization of the physicochemical parameters of particles as vaccine carriers. Drug Discov Today. 2021;26:1712–20. https://doi.org/10.1016/j.drudis.2021.03.007.

    Article  CAS  PubMed  Google Scholar 

  156. Benne N, van Duijn J, Kuiper J, Jiskoot W, Slütter B. Orchestrating immune responses: how size, shape and rigidity affect the immunogenicity of particulate vaccines. J Control Release. 2016;234:124–34. https://doi.org/10.1016/j.jconrel.2016.05.033.

    Article  CAS  PubMed  Google Scholar 

  157. Genito CJ, Batty CJ, Bachelder EM, Ainslie KM. Considerations for size, surface charge, polymer degradation, co-delivery, and manufacturability in the development of polymeric particle vaccines for infectious diseases. Adv NanoBiomed Res. 2021;1:2000041. https://doi.org/10.1002/anbr.202000041.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Berner VK, duPre SA, Redelman D, Hunter KW. Microparticulate β-glucan vaccine conjugates phagocytized by dendritic cells activate both naïve CD4 and CD8 T cells in vitro. Cell Immunol. 2015;298:104–14. https://doi.org/10.1016/j.cellimm.2015.10.007.

    Article  CAS  PubMed  Google Scholar 

  159. Slütter B, Jiskoot W. Sizing the optimal dimensions of a vaccine delivery system: a particulate matter. Expert Opin Drug Deliv. 2016;13:167–70. https://doi.org/10.1517/17425247.2016.1121989.

    Article  CAS  PubMed  Google Scholar 

  160. Kim CG, Kye YC, Yun CH. The role of nanovaccine in cross-presentation of antigen-presenting cells for the activation of CD8+ T cell responses. Pharmaceutics. 2019;11:612. https://doi.org/10.3390/pharmaceutics11110612.

    Article  CAS  PubMed Central  Google Scholar 

  161. Silva AL, Peres C, Conniot J, Matos AI, Moura L, Carreira B, et al. Nanoparticle impact on innate immune cell pattern-recognition receptors and inflammasomes activation. Semin Immunol. 2017;34:3–24. https://doi.org/10.1016/j.smim.2017.09.003.

    Article  CAS  PubMed  Google Scholar 

  162. Mant A, Chinnery F, Elliott T, Williams AP. The pathway of cross-presentation is influenced by the particle size of phagocytosed antigen. Immunology. 2012;136:163–75. https://doi.org/10.1111/j.1365-2567.2012.03558.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Maretti E, Rossi T, Bondi M, Croce MA, Hanuskova M, Leo E, et al. Inhaled solid lipid microparticles to target alveolar macrophages for tuberculosis. Int J Pharm. 2014;462:74–82. https://doi.org/10.1016/j.ijpharm.2013.12.034.

    Article  CAS  PubMed  Google Scholar 

  164. Huang J, Liu H, Wang M, Bai X, Cao J, Zhang Z, et al. Mannosylated gelatin nanoparticles enhanced inactivated PRRSV targeting dendritic cells and increased T cell immunity. Vet Immunol Immunopathol. 2021;235:110237. https://doi.org/10.1016/j.vetimm.2021.110237.

    Article  CAS  PubMed  Google Scholar 

  165. Qu Z, Li M, An R, Dai H, Yu Y, Li C, et al. Self-assembled BPIV3 nanoparticles can induce comprehensive immune responses and protection against BPIV3 challenge by inducing dendritic cell maturation in mice. Vet Microbiol. 2022;268:109415. https://doi.org/10.1016/j.vetmic.2022.109415.

    Article  CAS  PubMed  Google Scholar 

  166. He J, Liu Z, Jiang W, Zhu T, Wusiman A, Gu P, et al. Immune-adjuvant activity of lentinan-modified calcium carbonate microparticles on a H5N1 vaccine. Int J Biol Macromol. 2020;163:1384–92. https://doi.org/10.1016/j.ijbiomac.2020.08.005.

    Article  CAS  PubMed  Google Scholar 

  167. dos Santos T, Varela J, Lynch I, Salvati A, Dawson KA. Quantitative assessment of the comparative nanoparticle-uptake efficiency of a range of cell lines. Small. 2011;7:3341–9. https://doi.org/10.1002/smll.201101076.

    Article  CAS  PubMed  Google Scholar 

  168. Shima F, Uto T, Akagi T, Baba M, Akashi M. Size effect of amphiphilic poly(γ-glutamic acid) nanoparticles on cellular uptake and maturation of dendritic cells in vivo. Acta Biomater. 2013;9:8894–901. https://doi.org/10.1016/j.actbio.2013.06.010.

    Article  CAS  PubMed  Google Scholar 

  169. Lee JH, Ju JE, Il KB, Pak PJ, Choi EK, Lee HS, et al. Rod-shaped iron oxide nanoparticles are more toxic than sphere-shaped nanoparticles to murine macrophage cells. Environ Toxicol Chem. 2014;33:2759–66. https://doi.org/10.1002/etc.2735.

    Article  CAS  PubMed  Google Scholar 

  170. Ku KH. Responsive nanostructured polymer particles. Polymers (Basel). 2021;13:1–13. https://doi.org/10.3390/polym13020273.

    Article  CAS  Google Scholar 

  171. Kumar S, Anselmo AC, Banerjee A, Zakrewsky M, Mitragotri S. Shape and size-dependent immune response to antigen-carrying nanoparticles. J Control Release. 2015;220:141–8. https://doi.org/10.1016/j.jconrel.2015.09.069.

    Article  CAS  PubMed  Google Scholar 

  172. Madathiparambil Visalakshan R, González García LE, Benzigar MR, Ghazaryan A, Simon J, Mierczynska-Vasilev A, et al. The influence of nanoparticle shape on protein Corona formation. Small. 2020;16:2000285. https://doi.org/10.1002/smll.202000285.

    Article  CAS  Google Scholar 

  173. Garapaty A, Champion JA. Shape of ligand immobilized particles dominates and amplifies the macrophage cytokine response to ligands. PLoS One. 2019;14(5):e0217022. https://doi.org/10.1371/journal.pone.0217022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Sanchez L, Yi Y, Yu Y. Effect of partial PEGylation on particle uptake by macrophages. Nanoscale. 2017;9:288–97. https://doi.org/10.1039/c6nr07353k.

    Article  CAS  PubMed  Google Scholar 

  175. Meena J, Goswami DG, Anish C, Panda AK. Cellular uptake of polylactide particles induces size dependent cytoskeletal remodeling in antigen presenting cells. Biomater Sci. 2021;9:7962–76. https://doi.org/10.1039/d1bm01312b.

    Article  CAS  PubMed  Google Scholar 

  176. Matsuoka Y, Onohara E, Kojima N, Kuroda Y. Importance of particle size of oligomannose-coated liposomes for induction of Th1 immunity. Int Immunopharmacol. 2021;99:108068. https://doi.org/10.1016/j.intimp.2021.108068.

    Article  CAS  PubMed  Google Scholar 

  177. Li Z, Sun L, Zhang Y, Dove AP, O’Reilly RK, Chen G. Shape effect of Glyco-nanoparticles on macrophage cellular uptake and immune response. ACS Macro Lett. 2016;5:1059–64. https://doi.org/10.1021/acsmacrolett.6b00419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Abbaraju PL, Jambhrunkar M, Yang Y, Liu Y, Lu Y, Yu C. Asymmetric mesoporous silica nanoparticles as potent and safe immunoadjuvants provoke high immune responses. Chem Commun. 2018;54:2020–3. https://doi.org/10.1039/c8cc00327k.

    Article  CAS  Google Scholar 

  179. Liu Y, Chen X, Wang L, Yang T, Yuan Q, Ma G. Surface charge of PLA microparticles in regulation of antigen loading, macrophage phagocytosis and activation, and immune effects in vitro. Particuology. 2014;17:74–80. https://doi.org/10.1016/j.partic.2014.02.006.

    Article  CAS  Google Scholar 

  180. Neto LMM, Zufelato N, de Sousa-Júnior AA, Trentini MM, da Costa AC, Bakuzis AF, et al. Specific T cell induction using iron oxide based nanoparticles as subunit vaccine adjuvant. Hum Vaccines Immunother. 2018;14:2786–801. https://doi.org/10.1080/21645515.2018.1489192.

    Article  Google Scholar 

  181. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20:101–24. https://doi.org/10.1038/s41573-020-0090-8.

    Article  CAS  PubMed  Google Scholar 

  182. Cho CS, Hwang SK, Gu MJ, Kim CG, Kim SK, Bin JD, et al. Mucosal vaccine delivery using Mucoadhesive polymer particulate systems. Tissue Eng Regen Med. 2021;18:693–712. https://doi.org/10.1007/s13770-021-00373-w.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Chenthamara D, Subramaniam S, Ramakrishnan SG, Krishnaswamy S, Essa MM, Lin F, et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res. 2019;23:20. https://doi.org/10.1186/s40824-019-0166-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Schudel A, Francis DM, Thomas SN. Material design for lymph node drug delivery. Nat Rev Mater. 2019;4:415–28. https://doi.org/10.1038/s41578-019-0110-7.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Hernandez-Franco JF, Mosley Y-YC, Franco J, Ragland D, Yao Y, HogenEsch H. Effective and safe stimulation of humoral and cell-mediated immunity by intradermal immunization with a cyclic dinucleotide/nanoparticle combination adjuvant. J Immunol. 2021;206:700–11. https://doi.org/10.4049/jimmunol.2000703.

    Article  CAS  PubMed  Google Scholar 

  186. Singh RK, Malosse C, Davies J, Malissen B, Kochba E, Levin Y, et al. Using gold nanoparticles for enhanced intradermal delivery of poorly soluble auto-antigenic peptides. Nanomedicine. 2021;32:102321. https://doi.org/10.1016/j.nano.2020.102321.

    Article  CAS  PubMed  Google Scholar 

  187. Goswami R, Chatzikleanthous D, Lou G, Giusti F, Bonci A, Taccone M, et al. Mannosylation of LNP results in improved potency for self-amplifying RNA (SAM) vaccines. ACS Infect Dis. 2019;5:1546–58. https://doi.org/10.1021/acsinfecdis.9b00084.

    Article  CAS  PubMed  Google Scholar 

  188. Nishimoto Y, Nagashima S, Nakajima K, Ohira T, Sato T, Izawa T, et al. Carboxyl-, sulfonyl-, and phosphate-terminal dendrimers as a nanoplatform with lymph node targeting. Int J Pharm. 2020;576:119021. https://doi.org/10.1016/j.ijpharm.2020.119021.

    Article  CAS  PubMed  Google Scholar 

  189. Chen Y, Feng X, Zhao Y, Zhao X, Zhang X. Mussel-inspired polydopamine coating enhances the intracutaneous drug delivery from nanostructured lipid carriers dependently on a follicular pathway. Mol Pharm. 2020;17:1215–25. https://doi.org/10.1021/acs.molpharmaceut.9b01240.

    Article  CAS  PubMed  Google Scholar 

  190. Dölen Y, Valente M, Tagit O, Jäger E, Van Dinther EAW, van Riessen NK, et al. Nanovaccine administration route is critical to obtain pertinent iNKt cell help for robust anti-tumor T and B cell responses. Oncoimmunology. 2020;9(1):e1738813. https://doi.org/10.1080/2162402X.2020.1738813.

    Article  Google Scholar 

  191. Jewell CM, Bustamante Loṕez SC, Irvine DJ. In situ engineering of the lymph node microenvironment via intranodal injection of adjuvant-releasing polymer particles. Proc Natl Acad Sci U S A. 2011;108:15745–50. https://doi.org/10.1073/pnas.1105200108.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Gheibi Hayat SM, Bianconi V, Pirro M, Sahebkar A. Stealth functionalization of biomaterials and nanoparticles by CD47 mimicry. Int J Pharm. 2019;569:118628. https://doi.org/10.1016/j.ijpharm.2019.118628.

    Article  CAS  PubMed  Google Scholar 

  193. Kroll AV, Fang RH, Zhang L. Biointerfacing and applications of cell membrane-coated nanoparticles. Bioconjug Chem. 2017;28:23–32. https://doi.org/10.1021/acs.bioconjchem.6b00569.

    Article  CAS  PubMed  Google Scholar 

  194. Papini E, Tavano R, Mancin F. Opsonins and Dysopsonins of nanoparticles: facts, concepts, and methodological guidelines. Front Immunol. 2020;11:567365. https://doi.org/10.3389/fimmu.2020.567365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Li Y, Liu R, Shi Y, Zhang Z, Zhang X. Zwitterionic poly(carboxybetaine)-based cationic liposomes for effective delivery of small interfering RNA therapeutics without accelerated blood clearance phenomenon. Theranostics. 2015;5:583–96. https://doi.org/10.7150/thno.11234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Heuts J, Jiskoot W, Ossendorp F, Van Der MK. Cationic Nanoparticle-Based Cancer Vaccines. 2021;13:596. https://doi.org/10.3390/pharmaceutics13050596.

    Article  CAS  Google Scholar 

  197. Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature. 2016;534:396–401. https://doi.org/10.1038/nature18300.

    Article  CAS  PubMed  Google Scholar 

  198. Fromen CA, Rahhal TB, Robbins GR, Kai MP, Shen TW, Luft JC, et al. Nanoparticle surface charge impacts distribution, uptake and lymph node trafficking by pulmonary antigen-presenting cells. Nanomedicine Nanotechnology, Biol Med. 2016;12:677–87. https://doi.org/10.1016/j.nano.2015.11.002.

    Article  CAS  Google Scholar 

  199. Leal J, Smyth H, Ghosh D. Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int J Pharm. 2017;532:555–72. https://doi.org/10.1016/j.ijpharm.2017.09.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Song JG, Lee SH, Han HK. Development of an M cell targeted nanocomposite system for effective oral protein delivery: preparation, in vitro and in vivo characterization. J Nanobiotechnol. 2021;19:15. https://doi.org/10.1186/s12951-020-00750-y.

    Article  CAS  Google Scholar 

  201. Sanna V, Satta S, Hsiai T, Sechi M. Development of targeted nanoparticles loaded with antiviral drugs for SARS-CoV-2 inhibition. Eur J Med Chem. 2022;231:114121. https://doi.org/10.1016/j.ejmech.2022.114121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Yang X, Chen X, Lei T, Qin L, Zhou Y, Hu C, et al. The construction of in vitro nasal cavity-mimic M-cell model, design of M cell-targeting nanoparticles and evaluation of mucosal vaccination by nasal administration. Acta Pharm Sin B. 2020;10:1094–105. https://doi.org/10.1016/j.apsb.2020.02.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Bao X, Qian K, Yao P. Insulin- and cholic acid-loaded zein/casein-dextran nanoparticles enhance the oral absorption and hypoglycemic effect of insulin. J Mater Chem B. 2021;9:6234–45. https://doi.org/10.1039/D1TB00806D.

    Article  CAS  PubMed  Google Scholar 

  204. Guo S, Liang Y, Liu L, Yin M, Wang A, Sun K, et al. Research on the fate of polymeric nanoparticles in the process of the intestinal absorption based on model nanoparticles with various characteristics: size, surface charge and pro-hydrophobics. J Nanobiotechnol. 2021;19:32. https://doi.org/10.1186/s12951-021-00770-2.

    Article  CAS  Google Scholar 

  205. Reineke JJ, Cho DY, Dingle YT, Morello AP, Jacob J, Thanos CG, et al. Unique insights into the intestinal absorption, transit, and subsequent biodistribution of polymer-derived microspheres. Proc Natl Acad Sci U S A. 2013;110:13803–8. https://doi.org/10.1073/pnas.1305882110.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Rençber S, Gündoğdu E, Köksal Karayıldırım Ç, Başpınar Y. Preparation and characterization of mucoadhesive gels containing pentoxifylline loaded nanoparticles for vaginal delivery of genital ulcer. Iran Polym J. 2021;30:569–82. https://doi.org/10.1007/s13726-021-00913-0.

    Article  CAS  Google Scholar 

  207. Awaad A, Nakamura M. Size-dependent biodistribution of thiol-organosilica nanoparticles and F4/80 protein expression in the genital tract of female mice after intravaginal administration. Histochem Cell Biol. 2021;155:683–98. https://doi.org/10.1007/s00418-021-01974-1.

    Article  CAS  PubMed  Google Scholar 

  208. Kaur H, Mishra N, Khurana B, Kaur S, Arora D. DoE based optimization and development of spray-dried chitosan-coated alginate microparticles loaded with cisplatin for the treatment of cervical cancer. Cur Mol Pharmacol. 2021;14:381–8. https://doi.org/10.2174/1874467213666200517120337.

    Article  CAS  Google Scholar 

  209. Sánchez-López E, Paús A, Pérez-Pomeda I, Calpena A, Haro I, Gómara MJ. Lipid vesicles loaded with an HIV-1 fusion inhibitor peptide as a potential microbicide. Pharmaceutics. 2020;12:502. https://doi.org/10.3390/pharmaceutics12060502.

    Article  CAS  PubMed Central  Google Scholar 

  210. Silva AL, Rosalia RA, Varypataki E, Sibuea S, Ossendorp F, Jiskoot W. Poly- (lactic-co-glycolic-acid) -based particulate vaccines: particle uptake by dendritic cells is a key parameter for immune activation. Vaccine. 2015;33:847–54. https://doi.org/10.1016/j.vaccine.2014.12.059.

    Article  CAS  PubMed  Google Scholar 

  211. Li F, Chen Y, Liu S, Pan X, Liu Y, Zhao H, et al. The effect of size, dose, and administration route on zein nanoparticle immunogenicity in BALB/c mice. Int J Nanomedicine. 2019;14:9917–28. https://doi.org/10.1021/nn401911k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Lan H, Huang T, Xiao J, Liao Z, Ouyang J, Dong J, et al. The immuno-reactivity of polypseudorotaxane functionalized magnetic CDMNP-PEG-CD nanoparticles. J Cell Mol Med. 2021;25:561–74. https://doi.org/10.1111/jcmm.16109.

    Article  CAS  PubMed  Google Scholar 

  213. Ho JK, White PJ, Pouton CW. Self-crosslinking Lipopeptide / DNA / PEGylated particles : a new platform for DNA vaccination designed for assembly in aqueous solution. Mol Ther Nucleic Acid. 2018;12:504–17. https://doi.org/10.1016/j.omtn.2018.05.025.

    Article  CAS  Google Scholar 

  214. Feng Q, Liu Y, Huang J, Chen K, Huang J, Xiao K. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci Rep. 2018;8:2082. https://doi.org/10.1038/s41598-018-19628-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Singh M, Schiavone N, Papucci L, Maan P, Kaur J, Singh G, et al. Streptomycin sulphate loaded solid lipid nanoparticles show enhanced uptake in macrophage, lower MIC in Mycobacterium and improved oral bioavailability. Eur J Pharm Biopharm. 2021;160:100–24. https://doi.org/10.1016/j.ejpb.2021.01.009.

    Article  CAS  PubMed  Google Scholar 

  216. Zhou X, Liu Y, Wang X, Li X, Xiao B. Effect of particle size on the cellular uptake and anti-inflammatory activity of oral nanotherapeutics. Colloids Surf B Biointerfaces. 2020;187:110880. https://doi.org/10.1016/j.colsurfb.2020.110880.

    Article  CAS  PubMed  Google Scholar 

  217. Huang Y, Canup B, Gou S, Chen N, Dai F, Xiao B, et al. Oral nanotherapeutics with enhanced mucus penetration and ROS-responsive drug release capacities for delivery of curcumin to colitis tissues. J Mater Chem B. 2021;9:1604–15. https://doi.org/10.1039/d0tb02092c.

    Article  CAS  PubMed  Google Scholar 

  218. Fan Y, Sahdev P, Ochyl L, Akerberg J, Moon J. Cationic liposome-hyaluronic acid hybrid nanoparticles for intranasal vaccination with subunit antigens. J Control Release. 2015;208:121–9. https://doi.org/10.1016/j.jconrel.2015.04.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Quan M, Carpentier R, Lantier I, Ducournau C, Fasquelle F, Dimier-poisson I, et al. Protein delivery by porous cationic maltodextrin-based nanoparticles into nasal mucosal cells: comparison with cationic or anionic nanoparticles. Int J Pharm X. 2019;1:100001. https://doi.org/10.1016/j.ijpx.2018.100001.

    Article  CAS  Google Scholar 

  220. Dong C, Wang Y, Gonzalez GX, Ma Y, Song Y, Wang S, et al. Intranasal vaccination with influenza HA / GO-PEI nanoparticles provides immune protection against homo- and heterologous strains. PNAS. 2021;118:e2024998118. https://doi.org/10.1073/pnas.2024998118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Patel B, Gupta N, Ahsan F. Particle engineering to enhance or lessen particle uptake by alveolar macrophages and to influence the therapeutic outcome. Eur J Pharm Biopharm. 2015;89:163–74. https://doi.org/10.1016/j.ejpb.2014.12.001.

Download references

Funding

This work was supported by grants A1-S-14446 and A1-S-9849 Ciencia Básica (SEP-CONACyT) and IN216419, UNAM-DGAPA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Silvia Moreno-Mendieta or Romina Rodríguez-Sanoja.

Ethics declarations

Conflict of Interest

The authors declare no financial or personal interests that could influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno-Mendieta, S., Guillén, D., Vasquez-Martínez, N. et al. Understanding the Phagocytosis of Particles: the Key for Rational Design of Vaccines and Therapeutics. Pharm Res 39, 1823–1849 (2022). https://doi.org/10.1007/s11095-022-03301-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03301-2

KEY WORDS

Navigation