Skip to main content

Investigating Interactions Between Nanoparticles and Cells: Internalization and Intracellular Trafficking

  • Chapter
  • First Online:
Polymer Nanoparticles for Nanomedicines
  • 2112 Accesses

Abstract

Nanoparticles used as drug nanocarriers offer unique possibilities to overcome cellular barriers in order to improve the delivery of various molecules, including biomacromolecules such as nucleic acids or proteins. Depending on nanoparticle characteristics and the type of cells considered, various mechanisms of internalization may occur, as well as subsequent intracellular trafficking pathways. Understanding these pathways may have important pharmacological implications. This chapter will review the main nanoparticle internalization and trafficking mechanisms and their experimental characterizations, allowing to understand how they are affected by nanoparticle physicochemical properties. The phagocytosis pathway will first be described, being increasingly well characterized and understood, which has allowed several successes in the treatment of some cancers and infectious diseases. In contrast, other non-phagocytic pathways encompass various complex mechanisms, such as clathrin-mediated endocytosis, caveolae-mediated endocytosis and macropinocytosis. Although more challenging to control for pharmaceutical drug delivery applications, they are actively investigated in order to tailor nanocarriers able to deliver anticancer agents, nucleic acids, proteins, and peptides for therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aderem A (2002) How to eat something bigger than your head. Cell 110:5–8

    Article  CAS  PubMed  Google Scholar 

  • Aderem A, Underhill D (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623

    Article  CAS  PubMed  Google Scholar 

  • Aktaş Y, Yemisci M, Andrieux K, Gürsoy RN, Alonso MJ, Fernandez-Megia E, Novoa-Carballal R, Quiñoá E, Riguera R, Sargon MF, Celik HH, Demir AS, Hincal AA, Dalkara T, Capan Y, Couvreur P (2005) Development and brain delivery of chitosan-PEG nanoparticles functionalized with the monoclonal antibody OX26. Bioconjug Chem 16:1503–1511

    Article  PubMed  CAS  Google Scholar 

  • Al-Awqati Q (1986) Proton-translocating ATPases. Annu Rev Cell Biol 2:179–199

    Article  CAS  PubMed  Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Intracellular vesicular traffic. In: Alberts B (ed) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  • Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5:505–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen TM, Austin GA, Chonn A, Lin L, Lee KC (1991) Uptake of liposomes by cultured mouse bone marrow macrophages: influence of liposome composition and size. Biochim Biophys Acta Biomembranes 1061:56–64

    Article  CAS  Google Scholar 

  • Andresen TL, Jensen SS, Jørgensen K (2005) Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Prog Lipid Res 44:68–97

    Article  CAS  PubMed  Google Scholar 

  • Aub JC, Tieslaut C, Lankester A (1963) Reactions of normal and tumor cell surfaces to enzymes. I. Wheat-germ lipase and associated mucopolysaccharides. Proc Natl Acad Sci USA 50:613–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bae Y, Nishiyama N, Fukushima S, Koyama H, Yasuhiro M, Kataoka K (2005) Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug Chem 16:122–130

    Article  CAS  PubMed  Google Scholar 

  • Bareford LM, Swaan PW (2007) Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev 59:748–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barratt G, Tenu JP, Yapo A, Petit JF (1986) Preparation and characterisation of liposomes containing mannosylated phospholipids capable of targetting drugs to macrophages. Biochim Biophys Acta 862:153–164

    Article  CAS  PubMed  Google Scholar 

  • Behr JP (1997) The proton sponge: a trick to enter cells the viruses did not exploit. Chimia 51:34–36

    CAS  Google Scholar 

  • Beningo KA, Wang Y (2002) Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target. J Cell Sci 115:849–856

    CAS  PubMed  Google Scholar 

  • Bergstrand N, Arfvidsson MC, Kim J, Thompson DH, Edwards K (2003) Interactions between pH-sensitive liposomes and model membranes. Biophys Chem 104:361–379

    Article  CAS  PubMed  Google Scholar 

  • Bertholon I, Vauthier C, Labarre D (2006) Complement activation by core-shell poly(isobutylcyanoacrylate)–polysaccharide nanoparticles: influences of surface morphology, length, and type of polysaccharide. Pharm Res 23:1313–1323

    Article  CAS  PubMed  Google Scholar 

  • Betageri GV, Black CD, Szebeni J, Wahl LM, Weinstein JN (1993) Fc-receptor-mediated targeting of antibody-bearing liposomes containing dideoxycytidine triphosphate to human monocyte/macrophages. J Pharm Pharmacol 45:48–53

    Article  CAS  PubMed  Google Scholar 

  • Bieber T, Meissner W, Kostin S, Niemann A, Elsasser H (2002) Intracellular route and transcriptional competence of polyethylenimine-DNA complexes. J Control Release 82:441–454

    Article  CAS  PubMed  Google Scholar 

  • Black C, Gregoriadis G (1974) Intracellular fate and effect of liposome-entrapped actinomycin-d injected into rats. Biochem Soc Trans 2:869–871

    Article  CAS  Google Scholar 

  • Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92:7297–7301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brigger I, Morizet J, Aubert G, Chacun H, Terrier-Lacombe M, Couvreur P, Vassal G (2002) Poly(ethylene glycol)-coated hexadecylcyanoacrylate nanospheres display a combined effect for brain tumor targeting. J Pharmacol Exp Ther 303:928–936

    Article  CAS  PubMed  Google Scholar 

  • Calvo P, Alonso MJ, Vila-Jato JL, Robinson JR (1996) Improved ocular bioavailability of indomethacin by novel ocular drug carriers. J Pharm Pharmacol 48:1147–1152

    Article  CAS  PubMed  Google Scholar 

  • Calvo P, Gouritin B, Brigger I, Lasmezas C, Deslys J, Williams A, Andreux JP, Dormont D, Couvreur P (2001a) PEGylated polycyanoacrylate nanoparticles as vector for drug delivery in prion diseases. J Neurosci Methods 111:151–155

    Article  CAS  PubMed  Google Scholar 

  • Calvo P, Gouritin B, Chacun H, Desmaële D, D’Angelo J, Noel JP, Georgin D, Fattal E, Andreux JP, Couvreur P (2001b) Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm Res 18:1157–1166

    Article  CAS  PubMed  Google Scholar 

  • Calvo P, Gouritin B, Villarroya H, Eclancher F, Giannavola C, Klein C, Andreux JP, Couvreur P (2002) Quantification and localization of PEGylated polycyanoacrylate nanoparticles in brain and spinal cord during experimental allergic encephalomyelitis in the rat. Eur J Neurosci 15:1317–1326

    Article  PubMed  Google Scholar 

  • Carmona-Ribeiro AM (2006) Lipid bilayer fragments and disks in drug delivery. Curr Med Chem 13:1359–1370

    Article  CAS  PubMed  Google Scholar 

  • Caron E, Hall A (1998) Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282:1717–1721

    Article  CAS  PubMed  Google Scholar 

  • Cerletti A, Drewe J, Fricker G, Eberle AN, Huwyler J (2000) Endocytosis and transcytosis of an immunoliposome-based brain drug delivery system. J Drug Target 8:435–446

    Article  CAS  PubMed  Google Scholar 

  • Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci USA 103:4930–4934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Champion JA, Katare YK, Mitragotri S (2007a) Making polymeric micro- and nanoparticles of complex shapes. Proc Natl Acad Sci USA 104:11901–11904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Champion JA, Katare YK, Mitragotri S (2007b) Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release 121:3–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang WJ, Rothberg KG, Kamen BA, Anderson RG (1992) Lowering the cholesterol content of MA104 cells inhibits receptor-mediated transport of folate. J Cell Biol 118:63–69

    Article  CAS  PubMed  Google Scholar 

  • Chavanpatil MD, Khdair A, Panyam J (2006) Nanoparticles for cellular drug delivery: mechanisms and factors influencing delivery. J Nanosci Nanotechnol 6:2651–2663

    Article  CAS  PubMed  Google Scholar 

  • Chawla JS, Amiji MM (2002) Biodegradable poly([var epsilon]-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int J Pharm 249:127–138

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Langer R, Edwards DA (1997) A film tension theory of phagocytosis. J Colloid Interface Sci 190:118–133

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z, Singh RD, Marks DL, Pagano RE (2006) Membrane microdomains, caveolae, and caveolar endocytosis of sphingolipids. Mol Membr Biol 23:101–110

    Article  CAS  PubMed  Google Scholar 

  • Chonn A, Cullis PR, Devine DV (1991) The role of surface charge in the activation of the classical and alternative pathways of complement by liposomes. J Immunol 146:4234–4241

    CAS  PubMed  Google Scholar 

  • Christofidou-Solomidou M, Pietra GG, Solomides CC, Arguiris E, Harshaw D, Fitzgerald GA, Albelda SM, Muzykantov VR (2000) Immunotargeting of glucose oxidase to endothelium in vivo causes oxidative vascular injury in the lungs. Am J Physiol Lung Cell Mol Physiol 278:L794–L805

    CAS  PubMed  Google Scholar 

  • Chung T, Wu S, Yao M, Lu C, Lin Y, Hung Y, Mou C, Chen Y, Huang D (2007) The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. Biomaterials 28:2959–2966

    Article  CAS  PubMed  Google Scholar 

  • Claesson PM, Blomberg E, Fröberg JC, Nylander T, Arnebrant T (1995) Protein interactions at solid surfaces. Adv Colloid Interface Sci 57:161–227

    Article  CAS  Google Scholar 

  • Claus V, Jahraus A, Tjelle T, Berg T, Kirschke H, Faulstich H, Griffiths G (1998) Lysosomal enzyme trafficking between phagosomes, endosomes, and lysosomes in J774 macrophages. Enrichment of cathepsin H in early endosomes. J Biol Chem 273:9842–9851

    Article  CAS  PubMed  Google Scholar 

  • Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422:37–44

    Article  CAS  PubMed  Google Scholar 

  • Connor J, Norley N, Huang L (1986) Biodistribution of pH-sensitive immunoliposomes. Biochim Biophys Acta 884:474–481

    Article  CAS  PubMed  Google Scholar 

  • Couvreur P, Tulkenst P, Roland M, Trouet A, Speiser P (1977) Nanocapsules: a new type of lysosomotropic carrier. FEBS Lett 84:323–326

    Article  CAS  PubMed  Google Scholar 

  • Cullis PR, Chonn A, Semple SC (1998) Interactions of liposomes and lipid-based carrier systems with blood proteins: relation to clearance behaviour in vivo. Adv Drug Deliv Rev 32:3–17

    Article  CAS  PubMed  Google Scholar 

  • Dauty E, Remy J, Zuber G, Behr J (2002) Intracellular delivery of nanometric DNA particles via the folate receptor. Bioconjug Chem 13:831–839

    Article  CAS  PubMed  Google Scholar 

  • de la Fuente JM, Berry CC (2005) Tat peptide as an efficient molecule to translocate gold nanoparticles into the cell nucleus. Bioconjug Chem 16:1176–1180

    Article  PubMed  CAS  Google Scholar 

  • de Rieux A, Fievez V, Théate I, Mast J, Préat V, Schneider Y (2007) An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by M cells. Eur J Pharm Biopharm 30:380–391

    Google Scholar 

  • Decuzzi P, Ferrari M (2007) The role of specific and non-specific interactions in receptor-mediated endocytosis of nanoparticles. Biomaterials 28:2915–2922

    Article  CAS  PubMed  Google Scholar 

  • Demeneix B, Hassani Z, Behr J (2004) Towards multifunctional synthetic vectors. Curr Gene Ther 4:445–455

    Article  CAS  PubMed  Google Scholar 

  • Derksen JT, Morselt HW, Scherphof GL (1988) Uptake and processing of immunoglobulin-coated liposomes by subpopulations of rat liver macrophages. Biochim Biophys Acta 971:127–136

    Article  CAS  PubMed  Google Scholar 

  • Desai MP, Labhasetwar V, Amidon GL, Levy RJ (1996) Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res 13:1838–1845

    Article  CAS  PubMed  Google Scholar 

  • Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL (1997) The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res 14:1568–1573

    Article  CAS  PubMed  Google Scholar 

  • Desjardins M, Griffiths G (2003) Phagocytosis: latex leads the way. Curr Opin Cell Biol 15:498–503

    Article  CAS  PubMed  Google Scholar 

  • Devika Chithrani B, Ghazani A, Chan W (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668

    Article  PubMed  CAS  Google Scholar 

  • Devine DV, Wong K, Serrano K, Chonn A, Cullis PR (1994) Liposome-complement interactions in rat serum: implications for liposome survival studies. Biochim Biophys Acta 1191:43–51

    Article  CAS  PubMed  Google Scholar 

  • Di Fiore PP, De Camilli P (2001) Endocytosis and signaling. an inseparable partnership. Cell 106:1–4

    Article  PubMed  Google Scholar 

  • Ding B, Dziubla T, Shuvaev VV, Muro S, Muzykantov VR (2006) Advanced drug delivery systems that target the vascular endothelium. Mol Interv 6:98–112

    Article  CAS  PubMed  Google Scholar 

  • Drummond CJ, Fong C (1999) Surfactant self-assembly objects as novel drug delivery vehicles. Curr Opin Colloid Interface Sci 4:449–456

    Article  CAS  Google Scholar 

  • Drummond DC, Zignani M, Leroux J (2000) Current status of pH-sensitive liposomes in drug delivery. Prog Lipid Res 39:409–460

    Article  CAS  PubMed  Google Scholar 

  • Dunehoo AL, Anderson M, Majumdar S, Kobayashi N, Berkland C, Siahaan TJ (2006) Cell adhesion molecules for targeted drug delivery. J Pharm Sci 95:1856–1872

    Article  CAS  PubMed  Google Scholar 

  • Düzgünes N, Simões S, Slepushkin V, Pretzer E, Rossi JJ, De Clercq E, Antao VP, Collins ML, de Lima MC (2001) Enhanced inhibition of HIV-1 replication in macrophages by antisense oligonucleotides, ribozymes and acyclic nucleoside phosphonate analogs delivered in pH-sensitive liposomes. Nucleosides, Nucleotides Nucleic Acids 20:515–523

    Article  PubMed  Google Scholar 

  • Eboue D, Auger R, Angiari C, Le Doan T, Tenu JP (2003) Use of a simple fractionation method to evaluate binding, internalization and intracellular distribution of oligonucleotides in vascular smooth muscle cells. Arch Physiol Biochem 111:265–272

    Article  CAS  PubMed  Google Scholar 

  • Ellens H, Bentz J, Szoka FC (1984) pH-induced destabilization of phosphatidylethanolamine-containing liposomes: role of bilayer contact. Biochemistry 23:1532–1538

    Article  CAS  PubMed  Google Scholar 

  • Esmaeili F, Ghahremani MH, Esmaeili B, Khoshayand MR, Atyabi F, Dinarvand R (2008) PLGA nanoparticles of different surface properties: preparation and evaluation of their body distribution. Int J Pharm 349:249–255

    Article  CAS  PubMed  Google Scholar 

  • Fattal E, Couvreur P, Dubernet C (2004) “Smart” delivery of antisense oligonucleotides by anionic pH-sensitive liposomes. Adv Drug Deliv Rev 56:931–946

    Article  CAS  PubMed  Google Scholar 

  • Felgner JH, Kumar R, Sridhar CN, Wheeler CJ, Tsai YJ, Border R, Ramsey P, Martin M, Felgner PL (1994) Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem 269:2550–2561

    CAS  PubMed  Google Scholar 

  • Florence AT, Hillery AM, Hussain N, Jani PU (1995) Nanoparticles as carriers for oral peptide absorption: studies on particle uptake and fate. J Control Release 36:39–46

    Article  CAS  Google Scholar 

  • Frank M, Fries L (1991) The role of complement in inflammation and phagocytosis. Immunol Today 12:322–326

    Article  CAS  PubMed  Google Scholar 

  • Gabizon A, Papahadjopoulos D (1992) The role of surface charge and hydrophilic groups on liposome clearance in vivo. Biochim Biophys Acta Biomembranes 1103:94–100

    Article  CAS  Google Scholar 

  • Gabizon A, Shmeeda H, Horowitz AT, Zalipsky S (2004) Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Adv Drug Deliv Rev 56:1177–1192

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Shi W, Freund LB (2005) Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci USA 102:9469–9474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Garcia E, Gil S, Andrieux K, Desmaële D, Nicolas V, Taran F, Georgin D, Andreux JP, Roux F, Couvreur P (2005a) A relevant in vitro rat model for the evaluation of blood-brain barrier translocation of nanoparticles. Cell Mol Life Sci 62:1400–1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Garcia E, Andrieux K, Gil S, Kim HR, Le Doan T, Desmaële D, d’Angelo J, Taran F, Georgin D, Couvreur P (2005b) A methodology to study intracellular distribution of nanoparticles in brain endothelial cells. Int J Pharm 298(2):310–314

    Article  CAS  PubMed  Google Scholar 

  • Gillies ER, Fréchet JMJ (2005) pH-responsive copolymer assemblies for controlled release of doxorubicin. Bioconjug Chem 16:361–368

    Article  CAS  PubMed  Google Scholar 

  • Gillies ER, Goodwin AP, Fréchet JMJ (2004) Acetals as pH-sensitive linkages for drug delivery. Bioconjug Chem 15:1254–1263

    Article  CAS  PubMed  Google Scholar 

  • Göppert TM, Müller RH (2003) Plasma protein adsorption of Tween 80- and poloxamer 188-stabilized solid lipid nanoparticles. J Drug Target 11:225–231

    Article  PubMed  CAS  Google Scholar 

  • Göppert TM, Müller RH (2005) Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. J Drug Target 13:179–187

    Article  PubMed  CAS  Google Scholar 

  • Grabowski N, Hillaireau H, Vergnaud-Gauduchon J, Nicolas V, Tsapis N, Kerdine-Romer S, Fattal E (2016) Surface-modified biodegradable nanoparticles’ impact on cytotoxicity and inflammation response on a co-culture of lung epithelial cells and human-like macrophages. J Biomed Nanotechnol 12(1):135–146

    Article  CAS  PubMed  Google Scholar 

  • Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM (2008a) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA 105:11613–11618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gratton SEA, Napier ME, Ropp PA, Tian S, Desimone JM (2008b) Microfabricated particles for engineered drug therapies: elucidation into the mechanisms of cellular internalization of PRINT particles. Pharm Res 25:2845–2852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregoriadis G (1978) Liposomes in the therapy of lysosomal storage diseases. Nature 275:695–696

    Article  CAS  PubMed  Google Scholar 

  • Grislain L, Couvreur P, Lenaerts V, Roland M, Deprezdecampeneere D, Speiser P (1983) Pharmacokinetics and distribution of a biodegradable drug-carrier. Int J Pharm 15:335–345

    Article  CAS  Google Scholar 

  • Groves E, Dart A, Covarelli V, Caron E (2008) Molecular mechanisms of phagocytic uptake in mammalian cells. Cell Mol Life Sci 65:1957–1976

    Article  CAS  PubMed  Google Scholar 

  • Guo LSS (2001) Amphotericin B colloidal dispersion: an improved antifungal therapy. Adv Drug Deliv Rev 47:149–163

    Article  CAS  PubMed  Google Scholar 

  • Haag R, Kratz F (2006) Polymer therapeutics: concepts and applications. Angew Chem Int Ed Engl 45:1198–1215

    Article  CAS  PubMed  Google Scholar 

  • Harashima H, Sakata K, Funato K, Kiwada H (1994) Enhanced hepatic uptake of liposomes through complement activation depending on the size of liposomes. Pharm Res 11:402–406

    Article  CAS  PubMed  Google Scholar 

  • Harashima H, Hiraiwa T, Ochi Y, Kiwada H (1995) Size dependent liposome degradation in blood: in vivo/in vitro correlation by kinetic modeling. J Drug Target 3:253–261

    Article  CAS  PubMed  Google Scholar 

  • Harding JA, Engbers CM, Newman MS, Goldstein NI, Zalipsky S (1997) Immunogenicity and pharmacokinetic attributes of poly(ethylene glycol)-grafted immunoliposomes. Biochim Biophys Acta 1327:181–192

    Article  CAS  PubMed  Google Scholar 

  • Harush-Frenkel O, Debotton N, Benita S, Altschuler Y (2007) Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Biophys Res Commun 353:26–32

    Article  CAS  PubMed  Google Scholar 

  • Harush-Frenkel O, Rozentur E, Benita S, Altschuler Y (2008) Surface charge of nanoparticles determines their endocytic and transcytotic pathway in polarized MDCK cells. Biomacromolecules 9:435–443

    Article  CAS  PubMed  Google Scholar 

  • Heath TD, Lopez NG, Papahadjopoulos D (1985) The effects of liposome size and surface charge on liposome-mediated delivery of methotrexate-gamma-aspartate to cells in vitro. Biochim Biophys Acta 820:74–84

    Article  CAS  PubMed  Google Scholar 

  • Hilgenbrink AR, Low PS (2005) Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J Pharm Sci 94:2135–2146

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann PR, deCathelineau AM, Ogden CA, Leverrier Y, Bratton DL, Daleke DL, Ridley AJ, Fadok VA, Henson PM (2001) Phosphatidylserine (PS) induces PS receptor-mediated macropinocytosis and promotes clearance of apoptotic cells. J Cell Biol 155:649–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoshino A, Fujioka K, Oku T, Nakamura S, Suga M, Yamaguchi Y, Suzuki K, Yasuhara M, Yamamoto K (2004) Quantum dots targeted to the assigned organelle in living cells. Microbiol Immunol 48:985–994

    Article  CAS  PubMed  Google Scholar 

  • Hsu MJ, Juliano RL (1982) Interactions of liposomes with the reticuloendothelial system. II: nonspecific and receptor-mediated uptake of liposomes by mouse peritoneal macrophages. Biochim Biophys Acta 720:411–419

    Article  CAS  PubMed  Google Scholar 

  • Huang M, Ma Z, Khor E, Lim L (2002) Uptake of FITC-chitosan nanoparticles by A549 cells. Pharm Res 19:1488–1494

    Article  CAS  PubMed  Google Scholar 

  • Huang M, Khor E, Lim L (2004) Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Pharm Res 21:344–353

    Article  CAS  PubMed  Google Scholar 

  • Huwyler J, Wu D, Pardridge WM (1996) Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci USA 93:14164–14169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huwyler J, Yang J, Pardridge WM (1997) Receptor mediated delivery of daunomycin using immunoliposomes: pharmacokinetics and tissue distribution in the rat. J Pharmacol Exp Ther 282:1541–1546

    CAS  PubMed  Google Scholar 

  • Ilium L, Hunneyball I, Davis S (1986) The effect of hydrophilic coatings on the uptake of colloidal particles by the liver and by peritoneal macrophages. Int J Pharm 29:53–65

    Article  Google Scholar 

  • Jeon S, Lee J, Andrade J, De Gennes P (1991) Protein–surface interactions in the presence of polyethylene oxide: I. Simplified theory. J Colloid Interface Sci 142:149–158

    Article  CAS  Google Scholar 

  • Jiang W, Kim BYS, Rutka JT, Chan WCW (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3:145–150

    Article  CAS  PubMed  Google Scholar 

  • Jones A, Shusta E (2007) Blood–brain barrier transport of therapeutics via receptor-mediation. Pharm Res 24:1759–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juliano RL, Lin G (1980) The binding of human plasma proteins to cholesterol containing liposomes. In: Baldwin H (ed) Liposomes and immunobiology. Elsevier, New York, pp 49–66

    Google Scholar 

  • Juliano RL, Stamp D (1975) The effect of particle size and charge on the clearance rates of liposomes and liposome encapsulated drugs. Biochem Biophys Res Commun 63:651–658

    Article  CAS  PubMed  Google Scholar 

  • Kanaseki T, Kadota K (1969) The “vesicle in a basket”. A morphological study of the coated vesicle isolated from the nerve endings of the guinea pig brain, with special reference to the mechanism of membrane movements. J Cell Biol 42:202–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kichler A, Leborgne C, Coeytaux E, Danos O (2001) Polyethylenimine-mediated gene delivery: a mechanistic study. J Gene Med 3:135–144

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Jeong JH, Chun KW, Park TG (2005) Target-specific cellular uptake of PLGA nanoparticles coated with poly(L-lysine)-poly(ethylene glycol)-folate conjugate. Langmuir 21:8852–8857

    Article  CAS  PubMed  Google Scholar 

  • Kim HR, Gil S, Andrieux K, Nicolas V, Appel M, Chacun H, Desmaële D, Taran F, Georgin D, Couvreur P (2007a) Low-density lipoprotein receptor-mediated endocytosis of PEGylated nanoparticles in rat brain endothelial cells. Cell Mol Life Sci 64:356–364

    Article  CAS  PubMed  Google Scholar 

  • Kim HR, Andrieux K, Gil S, Taverna M, Chacun H, Desmaële D, Taran F, Georgin D, Couvreur P (2007b) Translocation of poly(ethylene glycol-co-hexadecyl)cyanoacrylate nanoparticles into rat brain endothelial cells: role of apolipoproteins in receptor-mediated endocytosis. Biomacromolecules 8:793–799

    Article  CAS  PubMed  Google Scholar 

  • Kim HR, Andrieux K, Delomenie C, Chacun H, Appel M, Desmaële D, Taran F, Georgin D, Couvreur P, Taverna M (2007c) Analysis of plasma protein adsorption onto PEGylated nanoparticles by complementary methods: 2-DE, CE and protein lab-on-chip system. Electrophoresis 28:2252–2261

    Article  CAS  PubMed  Google Scholar 

  • Kleemann E, Neu M, Jekel N, Fink L, Schmehl T, Gessler T, Seeger W, Kissel T (2005) Nano-carriers for DNA delivery to the lung based upon a TAT-derived peptide covalently coupled to PEG-PEI. J Control Release 109:299–316

    Article  CAS  PubMed  Google Scholar 

  • Kole L, Sarkar K, Mahato SB, Das PK (1994) Neoglycoprotein conjugated liposomes as macrophage specific drug carrier in the therapy of leishmaniasis. Biochem Biophys Res Commun 200:351–358

    Article  CAS  PubMed  Google Scholar 

  • Korn ED, Weisman RA (1967) Phagocytosis of latex beads by Acanthamoeba. II. Electron microscopic study of the initial events. J Cell Biol 34:219–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koval M, Preiter K, Adles C, Stahl PD, Steinberg TH (1998) Size of IgG-opsonized particles determines macrophage response during internalization. Exp Cell Res 242:265–273

    Article  CAS  PubMed  Google Scholar 

  • Kreuter J (2001) Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 47:65–81

    Article  CAS  PubMed  Google Scholar 

  • Kreuter J (2002) Transport of drugs accross the blood-brain barrier by nanoparticles. Curr Med Chem: Cent Nerv Syst Agents 2:241–249

    CAS  Google Scholar 

  • Kreuter J, Täuber U, Illi V (1979) Distribution and elimination of poly(methyl-2-14C-methacrylate) nanoparticle radioactivity after injection in rats and mice. J Pharm Sci 68:1443–1447

    Article  CAS  PubMed  Google Scholar 

  • Kreuter J, Ramge P, Petrov V, Hamm S, Gelperina SE, Engelhardt B, Alyautdin R, von Briesen H, Begley DJ (2003) Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res 20:409–416

    Article  CAS  PubMed  Google Scholar 

  • Labarre D (2012) The interactions between blood and polymeric nanoparticles depend on the nature and structure of the hydrogel covering the surface. Polymers 4:986–996

    Article  CAS  Google Scholar 

  • Labarre D, Montdargent B, Carreno M, Maillet F (1993) Strategy for in vitro evaluation of the interactions between biomaterials and complement system. J Appl Biomater 4:231–240

    Article  CAS  Google Scholar 

  • Lai SK, Hida K, Man ST, Chen C, Machamer C, Schroer TA, Hanes J (2007) Privileged delivery of polymer nanoparticles to the perinuclear region of live cells via a non-clathrin, non-degradative pathway. Biomaterials 28:2876–2884

    Article  CAS  PubMed  Google Scholar 

  • Larabi M, Yardley V, Loiseau PM, Appel M, Legrand P, Gulik A, Bories C, Croft SL, Barratt G (2003) Toxicity and antileishmanial activity of a new stable lipid suspension of amphotericin B. Antimicrob Agents Chemother 47:3774–3779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee RJ, Low PS (1995) Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim Biophys Acta 1233:134–144

    Article  PubMed  Google Scholar 

  • Lee K, Hong K, Papahadjopoulos D (1992a) Recognition of liposomes by cells: In vitro binding and endocytosis mediated by specific lipid headgroups and surface charge density. Biochim Biophys Acta Biomembranes 1103:185–197

    Article  CAS  Google Scholar 

  • Lee K, Pitas RE, Papahadjopoulos D (1992b) Evidence that the scavenger receptor is not involved in the uptake of negatively charged liposomes by cells. Biochim Biophys Acta Biomembranes 1111:1–6

    Article  CAS  Google Scholar 

  • Lee KD, Nir S, Papahadjopoulos D (1993) Quantitative analysis of liposome-cell interactions in vitro: rate constants of binding and endocytosis with suspension and adherent J774 cells and human monocytes. Biochemistry 32:889–899

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Engelhardt B, Lesley J, Bickel U, Pardridge WM (2000) Targeting rat anti-mouse transferrin receptor monoclonal antibodies through blood-brain barrier in mouse. J Pharmacol Exp Ther 292:1048–1052

    CAS  PubMed  Google Scholar 

  • Lee ES, Na K, Bae YH (2005) Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J Control Release 103:405–418

    Article  CAS  PubMed  Google Scholar 

  • Lehr CM, Bouwstra J, Schacht E, Junginger H (1992) In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int J Pharm 78:43–48

    Article  CAS  Google Scholar 

  • Lenaerts V, Nagelkerke JF, Van Berkel TJ, Couvreur P, Grislain L, Roland M, Speiser P (1984) In vivo uptake of polyisobutyl cyanoacrylate nanoparticles by rat liver Kupffer, endothelial, and parenchymal cells. J Pharm Sci 73:980–982

    Article  CAS  PubMed  Google Scholar 

  • Leroux JC, Gravel P, Balant L, Volet B, Anner BM, Allémann E, Doelker E, Gurny R (1994) Internalization of poly(D, L-lactic acid) nanoparticles by isolated human leukocytes and analysis of plasma proteins adsorbed onto the particles. J Biomed Mater Res 28:471–481

    Article  CAS  PubMed  Google Scholar 

  • Leroux J, De Jaeghere F, Anner B, Doelker E, Gurny R (1995) An investigation on the role of plasma and serum opsonins on the evternalization of biodegradable poly(D, L-lactic acid) nanoparticles by human monocytes. Life Sci 57:695–703

    Article  CAS  PubMed  Google Scholar 

  • Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Lim L (2003) Uptake of chitosan and associated insulin in Caco-2 cell monolayers: a comparison between chitosan molecules and chitosan nanoparticles. Pharm Res 20:1812–1819

    Article  CAS  PubMed  Google Scholar 

  • Mao S, Germershaus O, Fischer D, Linn T, Schnepf R, Kissel T (2005) Uptake and transport of PEG-graft-trimethyl-chitosan copolymer-insulin nanocomplexes by epithelial cells. Pharm Res 22:2058–2068

    Article  CAS  PubMed  Google Scholar 

  • Marsh M, Helenius A (2006) Virus entry: open sesame. Cell 124:729–740

    Article  CAS  PubMed  Google Scholar 

  • Martina M, Nicolas V, Wilhelm C, Ménager C, Barratt G, Lesieur S (2007) The in vitro kinetics of the interactions between PEG-ylated magnetic-fluid-loaded liposomes and macrophages. Biomaterials 28:4143–4153

    Article  CAS  PubMed  Google Scholar 

  • Maruyama K, Takizawa T, Yuda T, Kennel SJ, Huang L, Iwatsuru M (1995) Targetability of novel immunoliposomes modified with amphipathic poly(ethylene glycol)s conjugated at their distal terminals to monoclonal antibodies. Biochim Biophys Acta 1234:74–80

    Article  PubMed  Google Scholar 

  • Maruyama K, Takahashi N, Tagawa T, Nagaike K, Iwatsuru M (1997) Immunoliposomes bearing polyethyleneglycol-coupled Fab’ fragment show prolonged circulation time and high extravasation into targeted solid tumors in vivo. FEBS Lett 413:177–180

    Article  CAS  PubMed  Google Scholar 

  • Maruyama K, Ishida O, Takizawa T, Moribe K (1999) Possibility of active targeting to tumor tissues with liposomes. Adv Drug Deliv Rev 40:89–102

    Article  CAS  PubMed  Google Scholar 

  • Matter K, Mellman I (1994) Mechanisms of cell polarity: sorting and transport in epithelial cells. Curr Opin Cell Biol 6:545–554

    Article  CAS  PubMed  Google Scholar 

  • Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8:603–612

    Article  CAS  PubMed  Google Scholar 

  • Merdan T, Kunath K, Fischer D, Kopecek J, Kissel T (2002) Intracellular processing of poly(ethylene imine)/ribozyme complexes can be observed in living cells by using confocal laser scanning microscopy and inhibitor experiments. Pharm Res 19:140–146

    Article  CAS  PubMed  Google Scholar 

  • Mishra V, Mahor S, Rawat A, Gupta PN, Dubey P, Khatri K, Vyas SP (2006) Targeted brain delivery of AZT via transferrin anchored pegylated albumin nanoparticles. J Drug Target 14:45–53

    Article  CAS  PubMed  Google Scholar 

  • Mo Y, Lim L (2005a) Preparation and in vitro anticancer activity of wheat germ agglutinin (WGA)-conjugated PLGA nanoparticles loaded with paclitaxel and isopropyl myristate. J Control Release 107:30–42

    Article  CAS  PubMed  Google Scholar 

  • Mo Y, Lim L (2005b) Paclitaxel-loaded PLGA nanoparticles: potentiation of anticancer activity by surface conjugation with wheat germ agglutinin. J Control Release 108:244–262

    Article  CAS  PubMed  Google Scholar 

  • Moghimi SM, Szebeni J (2003) Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 42:463–478

    Article  CAS  PubMed  Google Scholar 

  • Moghimi SM, Muir IS, Illum L, Davis SS, Kolb-Bachofen V (1993) Coating particles with a block co-polymer (poloxamine-908) suppresses opsonization but permits the activity of dysopsonins in the serum. Biochim Biophys Acta 1179:157–165

    Article  CAS  PubMed  Google Scholar 

  • Mosqueira VC, Legrand P, Gref R, Heurtault B, Appel M, Barratt G (1999) Interactions between a macrophage cell line (J774A1) and surface-modified poly (D, L-lactide) nanocapsules bearing poly(ethylene glycol). J Drug Target 7:65–78

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Ghosh RN, Maxfield FR (1997) Endocytosis. Physiol Rev 77:759–803

    CAS  PubMed  Google Scholar 

  • Muller CD, Schuber F (1989) Neo-mannosylated liposomes: synthesis and interaction with mouse Kupffer cells and resident peritoneal macrophages. Biochim Biophys Acta 986:97–105

    Article  CAS  PubMed  Google Scholar 

  • Müller RH, Wallis KH, Tröster SD, Kreuter J (1992) In vitro characterization of poly(methyl-methaerylate) nanoparticles and correlation to their in vivo fate. J Control Release 20:237–246

    Article  Google Scholar 

  • Muro S, Wiewrodt R, Thomas A, Koniaris L, Albelda SM, Muzykantov VR, Koval M (2003) A novel endocytic pathway induced by clustering endothelial ICAM-1 or PECAM-1. J Cell Sci 116:1599–1609

    Article  CAS  PubMed  Google Scholar 

  • Muro S, Dziubla T, Qiu W, Leferovich J, Cui X, Berk E, Muzykantov VR (2006a) Endothelial targeting of high-affinity multivalent polymer nanocarriers directed to intercellular adhesion molecule 1. J Pharmacol Exp Ther 317:1161–1169

    Article  CAS  PubMed  Google Scholar 

  • Muro S, Schuchman EH, Muzykantov VR (2006b) Lysosomal enzyme delivery by ICAM-1-targeted nanocarriers bypassing glycosylation- and clathrin-dependent endocytosis. Mol Ther 13:135–141

    Article  CAS  PubMed  Google Scholar 

  • Muro S, Garnacho C, Champion JA, Leferovich J, Gajewski C, Schuchman EH, Mitragotri S, Muzykantov VR (2008) Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol Ther 16:1450–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neu M, Fischer D, Kissel T (2005) Recent advances in rational gene transfer vector design based on poly(ethylene imine) and its derivatives. J Gene Med 7:992–1009

    Article  CAS  PubMed  Google Scholar 

  • Norman ME, Williams P, Illum L (1992) Human serum albumin as a probe for surface conditioning (opsonization) of block copolymer-coated microspheres. Biomaterials 13:841–849

    Article  CAS  PubMed  Google Scholar 

  • Oh P, McIntosh DP, Schnitzer JE (1998) Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J Cell Biol 141:101–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivier J, Fenart L, Chauvet R, Pariat C, Cecchelli R, Couet W (1999) Indirect evidence that drug brain targeting using polysorbate 80-coated polybutylcyanoacrylate nanoparticles is related to toxicity. Pharm Res 16:1836–1842

    Article  CAS  PubMed  Google Scholar 

  • Owens D, Peppas N (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102

    Article  CAS  PubMed  Google Scholar 

  • Parton RG, Simons K (2007) The multiple faces of caveolae. Nat Rev Mol Cell Biol 8:185–194

    Article  CAS  PubMed  Google Scholar 

  • Patel LN, Zaro JL, Shen W (2007) Cell penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharm Res 24:1977–1992

    Article  CAS  PubMed  Google Scholar 

  • Pelkmans L, Helenius A (2002) Endocytosis via caveolae. Traffic 3:311–320

    Article  CAS  PubMed  Google Scholar 

  • Ponchel G, Irache JM (1998) Specific and non-specific bioadhesive particulate systems for oral delivery to the gastrointestinal tract. Adv Drug Deliv Rev 34:191–219

    Article  CAS  PubMed  Google Scholar 

  • Prabha S, Zhou W, Panyam J, Labhasetwar V (2002) Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. Int J Pharm 244:105–115

    Article  CAS  PubMed  Google Scholar 

  • Qaddoumi M, Ueda H, Yang J, Davda J, Labhasetwar V, Lee V (2004) The characteristics and mechanisms of uptake of PLGA nanoparticles in rabbit conjunctival epithelial cell layers. Pharm Res 21:641–648

    Article  CAS  PubMed  Google Scholar 

  • Qian ZM, Li H, Sun H, Ho K (2002) Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev 54:561–587

    Article  CAS  PubMed  Google Scholar 

  • Racoosin EL, Swanson JA (1992) M-CSF-induced macropinocytosis increases solute endocytosis but not receptor-mediated endocytosis in mouse macrophages. J Cell Sci 102(Pt 4):867–880

    CAS  PubMed  Google Scholar 

  • Rahman YE, Cerny EA, Patel KR, Lau EH, Wright BJ (1982) Differential uptake of liposomes varying in size and lipid composition by parenchymal and kupffer cells of mouse liver. Life Sci 31:2061–2071

    Article  CAS  PubMed  Google Scholar 

  • Raz A, Bucana C, Fogler WE, Poste G, Fidler IJ (1981) Biochemical, morphological, and ultrastructural studies on the uptake of liposomes by murine macrophages. Cancer Res 41:487–494

    CAS  PubMed  Google Scholar 

  • Rejman J, Oberle V, Zuhorn IS, Hoekstra D (2004) Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 377:159–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rejman J, Bragonzi A, Conese M (2005) Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. Mol Ther 12:468–474

    Article  CAS  PubMed  Google Scholar 

  • Rigotti A, Acton SL, Krieger M (1995) The class B scavenger receptors SR-BI and CD36 are receptors for anionic phospholipids. J Biol Chem 270:16221–16224

    Article  CAS  PubMed  Google Scholar 

  • Roberts J, Quastel JH (1963) Particle uptake by polymorphonuclear leucocytes and ehrlich ascites-carcinoma cells. Biochem J 89:150–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ropert C, Lavignon M, Dubernet C, Couvreur P, Malvy C (1992) Oligonucleotides encapsulated in pH sensitive liposomes are efficient toward Friend retrovirus. Biochem Biophys Res Commun 183:879–885

    Article  CAS  PubMed  Google Scholar 

  • Roser M, Fischer D, Kissel T (1998) Surface-modified biodegradable albumin nano- and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur J Pharm Biopharm 46:255–263

    Article  CAS  PubMed  Google Scholar 

  • Rothberg K, Ying Y, Kolhouse J, Kamen B, Anderson R (1990) The glycophospholipid-linked folate receptor internalizes folate without entering the clathrin-coated pit endocytic pathway. J Cell Biol 110:637–649

    Article  CAS  PubMed  Google Scholar 

  • Rudt S, Muller R (1993) In-vitro phagocytosis assay of nanoparticles and microparticles by chemiluminescence.3. Uptake of differently sized surface-modified particles, and its correlation to particle properties and in-vivo distribution. Eur J Pharm Sci 1:31–39

    Article  Google Scholar 

  • Sabharanjak S, Mayor S (2004) Folate receptor endocytosis and trafficking. Adv Drug Deliv Rev 56:1099–1109

    Article  CAS  PubMed  Google Scholar 

  • Sahoo SK, Labhasetwar V (2005) Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention. Mol Pharm 2:373–383

    Article  CAS  PubMed  Google Scholar 

  • Schäfer V, von Briesen H, Andreesen R, Steffan A, Royer C, Tröster S, Kreuter J, Rübsamen-Waigmann H (1992) Phagocytosis of nanoparticles by human immunodeficiency virus (HlV)-infected macrophages: a possibility for antiviral drug targeting. Pharm Res 9:541–546

    Article  PubMed  Google Scholar 

  • Scherphof G, Kamps J (1998) Receptor versus non-receptor mediated clearance of liposomes. Adv Drug Deliv Rev 32:81–97

    Article  CAS  PubMed  Google Scholar 

  • Schiffelers RM, Koning GA, ten Hagen TLM, Fens MHAM, Schraa AJ, Janssen APCA, Kok RJ, Molema G, Storm G (2003) Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. J Control Release 91:115–122

    Article  CAS  PubMed  Google Scholar 

  • Schmid SL (1997) Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu Rev Biochem 66:511–548

    Article  CAS  PubMed  Google Scholar 

  • Schnitzer JE (2001) Caveolae: from basic trafficking mechanisms to targeting transcytosis for tissue-specific drug and gene delivery in vivo. Adv Drug Deliv Rev 49:265–280

    Article  CAS  PubMed  Google Scholar 

  • Schnitzer JE, Oh P, Pinney E, Allard J (1994) Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J Cell Biol 127:1217–1232

    Article  CAS  PubMed  Google Scholar 

  • Schwendener R, Lagocki P, Rahman Y (1984) The effects of charge and size on the interaction of unilamellar liposomes with macrophages. Biochim Biophys Acta Biomembranes 772:93–101

    Article  CAS  Google Scholar 

  • Simberg D, Weisman S, Talmon Y, Barenholz Y (2004) DOTAP (and other cationic lipids): chemistry, biophysics, and transfection. Crit Rev Ther Drug Carrier Syst 21:257–317

    Article  CAS  PubMed  Google Scholar 

  • Stella B, Arpicco S, Peracchia MT, Desmaële D, Hoebeke J, Renoir M, D’Angelo J, Cattel L, Couvreur P (2000) Design of folic acid-conjugated nanoparticles for drug targeting. J Pharm Sci 89:1452–1464

    Article  CAS  PubMed  Google Scholar 

  • Straubinger RM, Düzgünes N, Papahadjopoulos D (1985) pH-sensitive liposomes mediate cytoplasmic delivery of encapsulated macromolecules. FEBS Lett 179:148–154

    Article  CAS  PubMed  Google Scholar 

  • Strømhaug PE, Berg TO, Gjøen T, Seglen PO (1997) Differences between fluid-phase endocytosis (pinocytosis) and receptor-mediated endocytosis in isolated rat hepatocytes. Eur J Cell Biol 73:28–39

    PubMed  Google Scholar 

  • Sun SX, Wirtz D (2006) Mechanics of enveloped virus entry into host cells. Biophys J 90:L10–L12

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Xie C, Wang H, Hu Y (2004) Specific role of polysorbate 80 coating on the targeting of nanoparticles to the brain. Biomaterials 25:3065–3071

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Rossin R, Turner JL, Becker ML, Joralemon MJ, Welch MJ, Wooley KL (2005) An assessment of the effects of shell cross-linked nanoparticle size, core composition, and surface PEGylation on in vivo biodistribution. Biomacromolecules 6:2541–2554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson J (1989) Phorbol esters stimulate macropinocytosis and solute flow through macrophages. J Cell Sci 94:135–142

    CAS  PubMed  Google Scholar 

  • Swanson JA, Baer SC (1995) Phagocytosis by zippers and triggers. Trends Cell Biol 5:89–93

    Article  CAS  PubMed  Google Scholar 

  • Swanson JA, Watts C (1995) Macropinocytosis. Trends Cell Biol 5:424–428

    Article  CAS  PubMed  Google Scholar 

  • Tabata Y, Ikada Y (1988) Effect of the size and surface-charge of polymer microspheres on their phagocytosis by macrophage. Biomaterials 9:356–362

    Article  CAS  PubMed  Google Scholar 

  • Tabata Y, Ikada Y (1990) Phagocytosis of polymer microspheres by macrophages. In: Boutevin B (ed) New polymer materials. Springer, Berlin, pp 107–141

    Chapter  Google Scholar 

  • Tkachenko AG, Xie H, Coleman D, Glomm W, Ryan J, Anderson MF, Franzen S, Feldheim DL (2003) Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J Am Chem Soc 125:4700–4701

    Article  CAS  PubMed  Google Scholar 

  • Torchilin VP (2008) Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv Drug Deliv Rev 60:548–558

    Article  CAS  PubMed  Google Scholar 

  • Torchilin VP, Berdichevsky VR, Barsukov AA, Smirnov VN (1980) Coating liposomes with protein decreases their capture by macrophages. FEBS Lett 111:184–188

    Article  CAS  PubMed  Google Scholar 

  • van Oss CJ (1978) Phagocytosis as a surface phenomenon. Annu Rev Microbiol 32:19–39

    Article  PubMed  Google Scholar 

  • Vasir JK, Labhasetwar V (2007) Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv Drug Deliv Rev 59:718–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasir JK, Labhasetwar V (2008) Quantification of the force of nanoparticle-cell membrane interactions and its influence on intracellular trafficking of nanoparticles. Biomaterials 29:4244–4252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verrecchia T, Huve P, Bazile D, Veillard M, Spenlehauer G, Couvreur P (1993) Adsorption/desorption of human serum albumin at the surface of poly(lactic acid) nanoparticles prepared by a solvent evaporation process. J Biomed Mater Res 27:1019–1028

    Article  CAS  PubMed  Google Scholar 

  • Vĕtvicka V, Fornůsek L (1987) Polymer microbeads in immunology. Biomaterials 8:341–345

    Article  PubMed  Google Scholar 

  • von Bonsdorff CH, Fuller SD, Simons K (1985) Apical and basolateral endocytosis in Madin-Darby canine kidney (MDCK) cells grown on nitrocellulose filters. EMBO J 4:2781–2792

    Google Scholar 

  • Vonarbourg A, Passirani C, Saulnier P, Benoit J (2006a) Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials 27:4356–4373

    Article  CAS  PubMed  Google Scholar 

  • Vonarbourg A, Passirani C, Saulnier P, Simard P, Leroux JC, Benoit JP (2006b) Evaluation of pegylated lipid nanocapsules versus complement system activation and macrophage uptake. J Biomed Mater Res A 78:620–628

    Article  CAS  PubMed  Google Scholar 

  • Wang LH, Rothberg KG, Anderson RG (1993) Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol 123:1107–1117

    Article  CAS  PubMed  Google Scholar 

  • Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski VR, Kamen BA (1992) Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 52:3396–3401

    CAS  PubMed  Google Scholar 

  • Xu Z, Gu W, Huang J, Sui H, Zhou Z, Yang Y, Yan Z, Li Y (2005) In vitro and in vivo evaluation of actively targetable nanoparticles for paclitaxel delivery. Int J Pharm 288:361–368

    Article  CAS  PubMed  Google Scholar 

  • Yagi N, Yano Y, Hatanaka K, Yokoyama Y, Okuno H (2007) Synthesis and evaluation of a novel lipid-peptide conjugate for functionalized liposome. Bioorg Med Chem Lett 17:2590–2593

    Article  CAS  PubMed  Google Scholar 

  • Yu B, Hailman E, Wright SD (1997) Lipopolysaccharide binding protein and soluble CD14 catalyze exchange of phospholipids. J Clin Investig 99:315–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zauner W, Farrow NA, Haines AMR (2001) In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. J Control Release 71:39–51

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Fang H, Chen Z, Taylor JA, Wooley KL (2008) Shape effects of nanoparticles conjugated with cell-penetrating peptides (HIV Tat PTD) on CHO cell uptake. Bioconjug Chem 19:1880–1887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuhorn IS, Engberts JBFN, Hoekstra D (2007) Gene delivery by cationic lipid vectors: overcoming cellular barriers. Eur Biophys J 36:349–362

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Hillaireau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hillaireau, H. (2016). Investigating Interactions Between Nanoparticles and Cells: Internalization and Intracellular Trafficking. In: Vauthier, C., Ponchel, G. (eds) Polymer Nanoparticles for Nanomedicines. Springer, Cham. https://doi.org/10.1007/978-3-319-41421-8_10

Download citation

Publish with us

Policies and ethics