Skip to main content
Log in

Designing an ultra-fast all-optical full-adder based on nonlinear photonic crystal cavities

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, a two-dimensional structure based on photonic crystal for adding three input bits is proposed. The dielectric rods used in this work are made of chalcogenide with a dielectric constant of 9.61. The lattice constant of the structure is 510 nm and the radius of the fundamental rods is 0.206 times the lattice constant. Three waveguides transmit the optical wave from input ports to the main waveguide. Based on the optical intensity in the main waveguide, two nonlinear cavities drop the waves toward the SUM and CARRY output ports. For using the optical Kerr effect, a rod made of the doped glass with a nonlinear coefficient of 10–14 m2/W is placed in each cavity. The radii of these rods are 1.12 and 1.06 times the radius of the fundamental rods. To calculate the band diagram and optical wave propagation throughout the proposed structure, the plane wave expansion and the finite difference time domain methods have been used. The maximum rise time of this structure is 400 fs that is less than one for the previous works. Furthermore, the area of the structure is around 115 µm2 which is proper to the optical circuits. Also, the obtained difference between margins of logic 0 and 1 is equal to 82%. According to the obtained results, one can be optimistic about the designed structure to be considered in optical processing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbasi, A., Noshad, M., Ranjbar, R., Kheradmand, R.: Ultra compact and fast all optical flip flop design in photonic crystal platform. Opt. Commun. 285, 5073–5078 (2012)

    Article  ADS  Google Scholar 

  • Alipour-Banaei, H., Seif-Dargahi, H.: Photonic crystal based 1-bit full-adder optical circuit by using ring resonators in a nonlinear structure. Photonics Nanostruct. Fundam. Appl. 24, 29–34 (2017)

    Article  ADS  Google Scholar 

  • Binh, L.N.: Digital Processing: Optical Transmission and Coherent Receiving Techniques. CRC Press, Boca Raton (2013)

    Google Scholar 

  • Cheraghi, F., Soroosh, M., Akbarizadeh, G.: An ultra-compact all optical full-adder based on nonlineaor photonic crystal resonant cavities. Superlattices Microstruct. 28, 154–161 (2018)

    Google Scholar 

  • Daghooghi, T., Soroosh, M., Ansari-Asl, K.: A novel proposal for all-optical decoder based on photonic crystals. Photonic Netw. Commun. 35, 335–341 (2017)

    Article  Google Scholar 

  • Ghadrdan, M., Mansouri-Birjandi, M.A.: Concurrent implementation of all-optical half- adder and AND & XOR logic gates based on nonlinear photonic crystal. Opt. Quantum Electron. 45, 1027–1036 (2013)

    Article  Google Scholar 

  • Ghasemi, M.A., Khodadadi, R., Alipour-Banaei, H.: Design and simulation of all optical multiplexer based on one-dimensional photonic crystal for optical communications systems. Intl. J. Eng. Res. Appl. 2(6), 960–968 (2012)

    Google Scholar 

  • Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: Molding the Flow of Light, 2nd edn. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  • Johnson, S., Joannopoulos, J.: Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 8, 173–190 (2001)

    Article  ADS  Google Scholar 

  • Keiser, G.: Optical Fiber Communications, 4th edn, pp. 163–176. New York, McGraw-Hill Science Engineering Math (2010)

    Google Scholar 

  • Li, C.: Nonlinear Optics: Principles and Applications. Springer, Berlin (2017)

    Book  Google Scholar 

  • Liu, Q., Ouyang, Z., Wu, C.J., Liu, C.P., Wang, J.C.: All-optical half adder based on cross structures in two-dimensional photonic crystals. Opt. Express 16, 18992–19000 (2008)

    ADS  Google Scholar 

  • Massaro, A.: Photonic crystals, introduction, applications and theory. In: Tech publisher (2012)

  • Mehdizadeh, F., Soroosh, M.: A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities. Photonic Netw. Commun. 31, 65–70 (2016)

    Article  Google Scholar 

  • Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: A novel proposal for optical decoder switch based on photonic crystal ring resonators. Opt. Quantum Electron. 48, 20 (2015)

    Article  Google Scholar 

  • Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: An optical demultiplexer based on photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 127, 8706–8709 (2016)

    Article  Google Scholar 

  • Mehdizadeh, F., Alipour-banaei, H., Serajmohammadi, S.: Study the role of non-linear resonant cavities in photonic crystal-based decoder switches. J. Mod. Opt. 0340, 1–9 (2017a)

    MathSciNet  Google Scholar 

  • Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: Proposal for 4-to-2 optical encoder based on photonic crystals. IET Optoelectron. 11, 29–35 (2017b)

    Article  Google Scholar 

  • Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: A novel proposal for all optical analog-to-digital converter based on photonic crystal structures. IEEE Photonics J. 9, 1–11 (2017c)

    Article  Google Scholar 

  • Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: All optical 2-bit analog to digital converter using photonic crystal based cavities. Opt. Quantum Electron. 49, 38 (2017d)

    Article  Google Scholar 

  • Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure. Appl. Opt. 56(7), 1799–1806 (2017e)

    Article  ADS  Google Scholar 

  • Moniem, T.A.: All optical active high decoder using integrated 2D square lattice photonic crystals. J. Mod. Opt. 62, 1643–1649 (2015a)

    Article  ADS  Google Scholar 

  • Moniem, T.A.: All-optical S-R flip flop using 2-D photonic crystal. Opt. Quan. Electron. 47, 2843–3285 (2015b)

    Article  Google Scholar 

  • Moniem, T.A.: All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators. J. Mod. Opt. 63, 735–741 (2016)

    Article  ADS  Google Scholar 

  • Moradi, M., Danaie, M., Orouji, A.A.: Design and analysis of an optical full-adder based on nonlinear photonic crystal ring resonators. Optik Int J Light Electron Opt 172, 127–136 (2018)

    Article  Google Scholar 

  • Neisy, M., Soroosh, M., Ansari-Asl, K.: All optical half adder based on photonic crystal resonant cavities. Photonic Netw. Commun. 35, 245–252 (2018)

    Article  Google Scholar 

  • Petrenko, A.D.: Nonlinear Kerr effect in magnetic crystals. Phys. Solid State. 41, 591–594 (1999)

    Article  ADS  Google Scholar 

  • Rahmani, A., Mehdizadeh, F.: Application of nonlinear PhCRRs in realizing all optical half- adder. Opt. Quantum Electron. 50, 30 (2017)

    Article  Google Scholar 

  • Rostami, A., Haddadpour, A., Nazari, F., Alipour, H.: Proposal for an ultracompact tunable wavelength-division-multiplexing optical filter based on quasi-2D photonic crystals. J. Opt. 12(1), 015405 (2009)

    Article  ADS  Google Scholar 

  • Saleh, B.E.A., Teich, M.C.: Fundamentals of Photonics, 3rd edn. Wiley, New Delhi (2019)

    Google Scholar 

  • Seif-Dargahi, H.: Ultra-fast all-optical encoder using photonic crystal-based ring resonators. Photon Netw. Commun. 36, 272–277 (2018)

    Article  Google Scholar 

  • Sullivan, D.M.: Electromagnetic Simulation Using the FDTD Method. IEEE Press, Piscataway (2000)

    Book  Google Scholar 

  • Swarnakar, S., Kumar, S., Sharma, S.: Performance analysis of all-optical full-adder based on two-dimensional photonic crystals. J. Comput. Electron. 43, 47–53 (2019)

    Google Scholar 

  • Talebzadeh, R., Soroosh, M., Daghooghi, T.: A 4-channel demultiplexer based on 2D photonic crystal using line defect resonant cavity. IETE J. Res. 62(6), 866–872 (2016)

    Article  Google Scholar 

  • Talebzadeh, R., Soroosh, M., Kavian, Y.S., Mehdizadeh, F.: Eight-channel all-optical demultiplexer based on photonic crystal resonant cavities. Optik Int. J. Light Electron Opt 140, 331–337 (2017)

    Article  Google Scholar 

  • Vali-Nasab, A.M., Mir, A., Talebzadeh, R.: Design and simulation of an all optical full-adder based on photonic crystals. Opt. Quant. Electron. 51, 161 (2019)

    Article  Google Scholar 

  • Werneck, M.M.M., Allil, R.C.S.B., De Nazaré, F.V.B.: Fiber Bragg Gratings: Theory, Fabrication, and Applications. SPIE, Bellingham (2017)

    Google Scholar 

  • Yang, Y.P., Lin, K.C., Yang, I.C., Lee, K.Y., Lee, W.Y., Tsai, Y.T.: All-optical photonic-crystal encoder capable of operating at multiple wavelengths. Optik Int. J. Light Electron Opt. 142, 354–359 (2017)

    Article  Google Scholar 

  • Youssefi, B., Moravvej-Farshi, M.K., Granpayeh, N.: Two bit all-optical analog-to-digital converter based on nonlinear Kerr effect in 2D photonic crystals. Opt. Commun. 285, 3228–3233 (2012)

    Article  ADS  Google Scholar 

  • Zamanian-Dehkordi, S.S., Soroosh, M., Akbarizadeh, G.H.: An ultra-fast all-optical RS flip-flop based on nonlinear photonic crystal structures. Opt. Rev. 25, 523–531 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Soroosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleki, M.J., Mir, A. & Soroosh, M. Designing an ultra-fast all-optical full-adder based on nonlinear photonic crystal cavities. Opt Quant Electron 52, 196 (2020). https://doi.org/10.1007/s11082-020-02311-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02311-x

Keywords

Navigation