Advertisement

A new approach to modelling Kelvin probe force microscopy of hetero-structures in the dark and under illumination

  • Yong HuangEmail author
  • Alexandre Gheno
  • Alain Rolland
  • Laurent Pedesseau
  • Sylvain Vedraine
  • Olivier Durand
  • Johann Bouclé
  • James P. Connolly
  • Lioz Etgar
  • Jacky EvenEmail author
Article
Part of the following topical collections:
  1. 2017 Numerical Simulation of Optoelectronic Devices

Abstract

A numerical method is proposed to model Kelvin probe force microscopy of hetero-structures in the dark and under illumination. It is applied to FTO/TiO2 and FTO/TiO2/MAPbI3 structures. The presence of surface states on the top of the TiO2 layers are revealed by combining theoretical computation and experimental results. Basic features of Kelvin probe force microscopy under illumination, namely surface photovoltage, are simulated as well. The method paves the way toward further investigations of more complicated optoelectronic devices.

Keywords

KPFM Drift–diffusion Hetero-structures SPV Halide perovskite 

Notes

Acknowledgements

The work at FOTON was supported by French ANR SupersansPlomb project. Y.H.’s work at Xlim and IPVF was supported by HPERO GDR (CNRS).

References

  1. Aharon, S., Gamliel, S., Cohen, B.E., Etgar, L.: Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. Phys. Chem. Chem. Phys. 16, 10512–10518 (2014).  https://doi.org/10.1039/c4cp00460d CrossRefGoogle Scholar
  2. Ball, J.M., Stranks, S.D., Hörantner, M.T., Hüttner, S., Zhang, W., Crossland, E.J.W., Ramirez, I., Riede, M., Johnston, M.B., Friend, R.H., Snaith, H.J.: Optical properties and limiting photocurrent of thin-film perovskite solar cells. Energy Environ. Sci. 8, 602–609 (2015).  https://doi.org/10.1039/C4EE03224A CrossRefGoogle Scholar
  3. Barnea-Nehoshtan, L., Kirmayer, S., Edri, E., Hodes, G., Cahen, D.: Surface photovoltage spectroscopy study of organo-lead perovskite solar cells. J. Phys. Chem. Lett. 5, 2408–2413 (2014).  https://doi.org/10.1021/jz501163r CrossRefGoogle Scholar
  4. Bergmann, V.W., Guo, Y., Tanaka, H., Hermes, I.M., Li, D., Klasen, A., Bretschneider, S.A., Nakamura, E., Berger, R., Weber, S.A.L.: Local time-dependent charging in a perovskite solar cell. ACS Appl. Mater. Interfaces. 8, 19402–19409 (2016).  https://doi.org/10.1021/acsami.6b04104 CrossRefGoogle Scholar
  5. Brattain, W.H., Bardeen, J.: Surface properties of germanium. Bell Syst. Tech. J. 32, 1–41 (1953).  https://doi.org/10.1002/j.1538-7305.1953.tb01420.x CrossRefGoogle Scholar
  6. Challinger, S.E., Baikie, I.D., Harwell, J.R., Turnbull, G.A., Samuel, I.D.W.: An investigation of the energy levels within a common perovskite solar cell device and a comparison of DC/AC surface photovoltage spectroscopy Kelvin probe measurements of different MAPBI3 perovskite solar cell device structures. MRS Adv (2017).  https://doi.org/10.1557/adv.2017.72 Google Scholar
  7. Chen, Y.-J., Zhang, M.-J., Yuan, S., Qiu, Y., Wang, X.-B., Jiang, X., Gao, Z., Lin, Y., Pan, F.: Insight into interfaces and junction of polycrystalline silicon solar cells by kelvin probe force microscopy. Nano Energy 36, 303–312 (2017).  https://doi.org/10.1016/j.nanoen.2017.04.045 CrossRefGoogle Scholar
  8. Colella, S., Mosconi, E., Fedeli, P., Listorti, A., Gazza, F., Orlandi, F., Ferro, P., Besagni, T., Rizzo, A., Calestani, G., Gigli, G., De Angelis, F., Mosca, R.: MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties. Chem. Mater. 25, 4613–4618 (2013).  https://doi.org/10.1021/cm402919x CrossRefGoogle Scholar
  9. Dymshits, A., Henning, A., Segev, G., Rosenwaks, Y., Etgar, L.: The electronic structure of metal oxide/organo metal halide perovskite junctions in perovskite based solar cells. Sci. Rep. 5, 8704 (2015).  https://doi.org/10.1038/srep08704 ADSCrossRefGoogle Scholar
  10. Forro, L., Chauvet, O., Emin, D., Zuppiroli, L., Berger, H., Lévy, F.: High mobility n-type charge carriers in large single crystals of anatase (TiO2). J. Appl. Phys. 75, 633–635 (1994).  https://doi.org/10.1063/1.355801 ADSCrossRefGoogle Scholar
  11. Garrett, J.L., Tennyson, E.M., Hu, M., Huang, J., Munday, J.N., Leite, M.S.: Real-time nanoscale open-circuit voltage dynamics of perovskite solar cells. Nano Lett. (2017).  https://doi.org/10.1021/acs.nanolett.7b00289 Google Scholar
  12. Gheno, A., Thu Pham, T.T., Di Bin, C., Bouclé, J., Ratier, B., Vedraine, S.: Printable WO3 electron transporting layer for perovskite solar cells: influence on device performance and stability. Sol. Energy Mater. Sol. Cells 161, 347–354 (2017).  https://doi.org/10.1016/j.solmat.2016.10.002 CrossRefGoogle Scholar
  13. González, Y., Abelenda, A., Sánchez, M.: Surface photovoltage spectroscopy characterization of AlGaAs/GaAs laser structures. J. Phys: Conf. Ser. 792, 012021 (2017).  https://doi.org/10.1088/1742-6596/792/1/012021 Google Scholar
  14. Harwell, J.R., Baikie, T.K., Baikie, I.D., Payne, J.L., Ni, C., Irvine, J.T.S., Turnbull, G.A., Samuel, I.D.W.: Probing the energy levels of perovskite solar cells via Kelvin probe and UV ambient pressure photoemission spectroscopy. Phys. Chem. Chem. Phys. 18, 19738–19745 (2016).  https://doi.org/10.1039/C6CP02446G CrossRefGoogle Scholar
  15. Huang, Y., Aharon, S., Rolland, A., Pedesseau, L., Durand, O., Etgar, L., Even, J.: Influence of Schottky contact on the C–V and J–V characteristics of HTM-free perovskite solar cells. EPJ Photovolt. 8, 85501 (2017).  https://doi.org/10.1051/epjpv/2017001 ADSCrossRefGoogle Scholar
  16. Jiang, C.-S., Yang, M., Zhou, Y., To, B., Nanayakkara, S.U., Luther, J.M., Zhou, W., Berry, J.J., van de Lagemaat, J., Padture, N.P., Zhu, K., Al-Jassim, M.M.: Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential. Nat. Commun. 6, 8397 (2015).  https://doi.org/10.1038/ncomms9397 CrossRefGoogle Scholar
  17. Kitaura, M., Azuma, J., Ishizaki, M., Kamada, K., Kurosawa, S., Watanabe, S., Ohnishi, A., Hara, K.: Energy location of Ce3+ 4f level and majority carrier type in Gd3Al2Ga3O12: Ce crystals studied by surface photovoltage spectroscopy. Appl. Phys. Lett. 110, 251101 (2017).  https://doi.org/10.1063/1.4987141 ADSCrossRefGoogle Scholar
  18. Kronik, L.: Surface photovoltage phenomena: theory, experiment, and applications. Surf. Sci. Rep. 37, 1–206 (1999).  https://doi.org/10.1016/S0167-5729(99)00002-3 ADSCrossRefGoogle Scholar
  19. Kronik, L., Shapira, Y.: Surface photovoltage spectroscopy of semiconductor structures: at the crossroads of physics, chemistry and electrical engineering. Surf. Interface Anal. 31, 954–965 (2001).  https://doi.org/10.1002/sia.1132 CrossRefGoogle Scholar
  20. Levine, I., Gupta, S., Brenner, T.M., Azulay, D., Millo, O., Hodes, G., Cahen, D., Balberg, I.: Mobility-lifetime products in MAPbI3 films. J. Phys. Chem. Lett. 7, 5219–5226 (2016).  https://doi.org/10.1021/acs.jpclett.6b02287 CrossRefGoogle Scholar
  21. Lin, Q., Armin, A., Nagiri, R.C.R., Burn, P.L., Meredith, P.: Electro-optics of perovskite solar cells. Nat. Photonics 9, 106–112 (2014).  https://doi.org/10.1038/nphoton.2014.284 ADSCrossRefGoogle Scholar
  22. Minj, A., Skuridina, D., Cavalcoli, D., Cros, A., Vogt, P., Kneissl, M., Giesen, C., Heuken, M.: Surface properties of AlInGaN/GaN heterostructure. Mater. Sci. Semicond. Process. 55, 26–31 (2016).  https://doi.org/10.1016/j.mssp.2016.04.005 CrossRefGoogle Scholar
  23. Miyagi, T., Ogawa, T., Kamei, M., Wada, Y., Mitsuhashi, T., Yamazaki, A., Ohta, E., Sato, T.: Deep level transient spectroscopy analysis of an anatase epitaxial film grown by metal organic chemical vapor deposition. Jpn. J. Appl. Phys. 40, L404–L406 (2001).  https://doi.org/10.1143/JJAP.40.L404 ADSCrossRefGoogle Scholar
  24. Ono, L.K., Qi, Y.: Surface and interface aspects of organometal halide perovskite materials and solar cells. J. Phys. Chem. Lett. 7, 4764–4794 (2016).  https://doi.org/10.1021/acs.jpclett.6b01951 CrossRefGoogle Scholar
  25. Palermo, V., Palma, M., Tomović, Ž., Watson, M.D., Friedlein, R., Müllen, K., Samorì, P.: Influence of molecular order on the local work function of nanographene architectures: a Kelvin-probe force microscopy study. ChemPhysChem 6, 2371–2375 (2005).  https://doi.org/10.1002/cphc.200500181 CrossRefGoogle Scholar
  26. Rosenwaks, P.Y., Saraf, S., Tal, O., Schwarzman, A., Glatzel, D.T., Lux-Steiner, P.D.M.C.: Kelvin probe force microscopy of semiconductors. In: Kalinin, S., Gruverman, A. (eds.) Scanning Probe Microscopy, pp. 663–689. Springer, New York (2007)CrossRefGoogle Scholar
  27. Rühle, S., Cahen, D.: Electron tunneling at the TiO2/substrate interface can determine dye-sensitized solar cell performance. J. Phys. Chem. B 108, 17946–17951 (2004).  https://doi.org/10.1021/jp047686s CrossRefGoogle Scholar
  28. Sadewasser, S., Glatzel, T.: Kelvin Probe Force Microscopy: Measuring and Compensating Electrostatic Forces. Springer Series in Surface Sciences, 2012 edition. Springer (2011)Google Scholar
  29. Silvaco Inc.: ATLAS user’s manual (2012). http://silvaco.com
  30. Singh, S.D., Porwal, S., Sinha, A.K., Ganguli, T.: Surface photovoltage spectroscopy of an epitaxial ZnO/GaP heterojunction. Semicond. Sci. Technol. 32, 055005 (2017).  https://doi.org/10.1088/1361-6641/aa6424 ADSCrossRefGoogle Scholar
  31. Snaith, H.J., Grätzel, M.: The role of a “Schottky Barrier” at an electron-collection electrode in solid-state dye-sensitized solar cells. Adv. Mater. 18, 1910–1914 (2006).  https://doi.org/10.1002/adma.200502256 CrossRefGoogle Scholar
  32. Tang, H., Prasad, K., Sanjinès, R., Schmid, P.E., Lévy, F.: Electrical and optical properties of TiO2 anatase thin films. J. Appl. Phys. 75, 2042–2047 (1994).  https://doi.org/10.1063/1.356306 ADSCrossRefGoogle Scholar
  33. Tsai, H., Nie, W., Lin, Y.-H., Blancon, J.C., Tretiak, S., Even, J., Gupta, G., Ajayan, P.M., Mohite, A.D.: Effect of precursor solution aging on the crystallinity and photovoltaic performance of perovskite solar cells. Adv. Energy Mater. 7, 1602159 (2017).  https://doi.org/10.1002/aenm.201602159 CrossRefGoogle Scholar
  34. Yang, Y., Yan, Y., Yang, M., Choi, S., Zhu, K., Luther, J.M., Beard, M.C.: Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal. Nat. Commun. 6, 7961 (2015).  https://doi.org/10.1038/ncomms8961 ADSCrossRefGoogle Scholar
  35. Zhou, H., Chen, Q., Li, G., Luo, S., Song, T., Duan, H.-S., Hong, Z., You, J., Liu, Y., Yang, Y.: Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014).  https://doi.org/10.1126/science.1254050 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.INSA de Rennes, UMR 6082, CNRSFonctions Optiques pour les Technologies de l’Information (FOTON)RennesFrance
  2. 2.Université de Limoges/CNRS, UMR 7252XLIMLimoges CedexFrance
  3. 3.Institut Photovoltaïque de l’Île de France (IPVF)AntonyFrance
  4. 4.Institute of ChemistryThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations