Skip to main content

Kelvin Probe Force Microscopy with Atomic Resolution

  • Chapter
  • First Online:
Kelvin Probe Force Microscopy

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 65))

Abstract

The surface potential distribution measured using Kelvin probe force microscopy (KPFM) is influenced by the contact potential difference (CPD) between the tip and surface, the stray capacitance of the cantilever, and fixed monopole charges on the surface and tip. The interpretation of atomic-scale KPFM contrast studies has been controversial. Here, we investigate the contrast mechanism in KPFM with atomic resolution. First, the effect of stray capacitance on potential measurements is explored in the FM-, AM-, and heterodyne AM-KPFM modes. The distance dependence of the modulated electrostatic force in AM-KPFM is much weaker than that in FM- and heterodyne AM-KPFM, and the stray capacitance of the cantilever, which strongly affects potential measurements in AM-KPFM, is almost completely eliminated in FM- and heterodyne AM-KPFM. The very small local contact potential difference (LCPD) corrugation in AM-KPFM is attributed to an artefact induced by the topographic feedback. Next, an investigation of the LCPD on a TiO2 (110)-1 × 1 surface and atom-dependent bias-distance spectroscopic mapping are performed. The LCPD of TiO2 (110) is dominated not only by the permanent surface dipole between the tip apex atom and the surface, but also by the dipoles induced by the chemical interaction between the tip and sample. Finally, we propose a new multiple-image method for obtaining the frequency shift, tunneling current, and LCPD images. For the first time, we obtain three images on a TiO2(110) surface with atomic resolution at 78 K. The LCPD has a higher value on a defect site than on the nearby O rows because excess electrons caused by surface defects are delocalized on the nearby Ti rows. The multiple-image method can be used to investigate the charge transfer phenomena between nanoparticles and surface sites and to elucidate the mechanisms of catalytic reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Binnig, C.F. Quate, Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986)

    Article  ADS  Google Scholar 

  2. R. García, R. Pérez, Surf. Sci. Rep. 47, 197 (2002)

    Article  ADS  Google Scholar 

  3. Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Pérez, S. Morita, Ó. Custance, Nature 446, 64 (2007)

    Article  ADS  Google Scholar 

  4. J. Bamidele, S.H. Lee, Y. Kinoshita, R. Turanský, Y. Naitoh, Y.J. Li, Y. Sugawara, I. Štich, L. Kantorovich, Nat. Commun. 5, 4476 (2014)

    Article  ADS  Google Scholar 

  5. Y. Naitoh, R. Turanský, J. Brndiar, Y.J. Li, I. Štich, Y. Sugawara, Nat. Phys. (2017) (Accepted for publication)

    Google Scholar 

  6. G.H. Enevoldsen, T. Glatzel, M.C. Chrisensen, J.V. Laurisen, F. Besenbacher, Phys. Rev. Lett. 100, 236104 (2008)

    Article  ADS  Google Scholar 

  7. S. Kawai, T. Glatzel, H. Hug, E. Meyer, Nanotechnology 21, 245704 (2009)

    Article  ADS  Google Scholar 

  8. L. Nony, F. Bocquet, C. Loppacher, T. Glatzel, Nanotechnology 20, 264014 (2009)

    Article  ADS  Google Scholar 

  9. M. Bieletzki, T. Hynninen, T.M. Soini, M. Pivetta, C.R. Henry, A.S. Foster, F. Esch, C. Barth, U. Heiz, Phys. Chem. Chem. Phys. 12, 3203 (2010)

    Article  Google Scholar 

  10. C. Barth, A.S. Foster, C.R. Henry, A.L. Shluger, Adv. Mater. 23, 477 (2011)

    Article  Google Scholar 

  11. K. Wandelt, Appl. Surf. Sci. 111, 1 (1997)

    Article  ADS  Google Scholar 

  12. L. Nony, F. Bocquet, C. Loppacher, Phys. Rev. B. 78, 035410 (2008)

    Google Scholar 

  13. L. Nony, A.S. Foster, F. Bocquet, C. Loppacher, Phys. Rev. Lett. 103, 036802 (2009)

    Article  ADS  Google Scholar 

  14. S. Sadewasser, P. Jelinek, C.K. Fang, O. Custance, Y. Yamada, Y. Sugimoto, M. Abe, S. Morita, Phys. Rev. Lett. 103, 266103 (2009)

    Article  ADS  Google Scholar 

  15. M. Tsukada, A. Masago, M. Shimizu, J. Phys. Condens. Matter. 24, 084002 (2012)

    Google Scholar 

  16. S. Kitamura, K. Kobayashi, H. Yamada, K. Matsushige, Appl. Surf. Sci. 157, 222 (2000)

    Article  ADS  Google Scholar 

  17. A. Kikukawa, S. Hosaka, R. Imura, Rev. Sci. Instrum. 67, 1464 (1996)

    Article  ADS  Google Scholar 

  18. T. Glatzel, S. Sadewasser, M.C. Lux-Sterner, Appl. Surf. Sci. 210, 84 (2003)

    Article  ADS  Google Scholar 

  19. Y. Sugawara, L. Kou, Z.M. Ma, T. Kamijo, Y. Naitoh, Y.J. Li, Appl. Phys. Lett. 100, 223104 (2012)

    Article  ADS  Google Scholar 

  20. S.A. Burke, J.M. LeDue, Y. Miyahara, J.M. Topple, S. Fostner, P. Grütter, Nanotechnology 20, 264012 (2009)

    Article  ADS  Google Scholar 

  21. D. Ziegler, J. Rychen, N. Naujoks, A. Stemmer, Nanotechnology 18, 225505 (2007)

    Article  ADS  Google Scholar 

  22. A. Sadeghi, A. Baratoff, S.A. Ghasemi, S. Goedecker, T. Glatzel, S. Kawai, E. Meyer, Phys. Rev. B. 86, 075407 (2012)

    Article  ADS  Google Scholar 

  23. S. Hudlet, M.S. Jeana, C. Guthmann, J. Berger, Eur. Phys. J. B. 2, 5 (1998)

    Google Scholar 

  24. L. Olsson, N. Lin, V. Yakimov, R. Erlandsson, J. Appl. Phys. 84, 4060 (1998)

    Article  ADS  Google Scholar 

  25. B. Gotsmann, C. Seidel, B. Anczykowski, H. Fuchs, Phys. Rev. B. 60, 11051 (1999)

    Article  ADS  Google Scholar 

  26. T. Fukuma, K. Kobayashi, H. Yamada, K. Matsushige, Rev. Sci. Instrum. 75, 4589 (2004)

    Google Scholar 

  27. M.Z. Baykara, H. Mönig, T.C. Schwendemann, Ö. Ünverdi, E.I. Altman, U.D. Schwarz, Appl. Phys. Lett. 108, 071601 (2016)

    Article  ADS  Google Scholar 

  28. Z.M. Ma, L. Kou, Y. Naitoh, Y.J. Li, Y. Sugawara, Nanotechnology 24, 225701 (2013)

    Article  ADS  Google Scholar 

  29. D.W. Goodman, J. Catal. 216, 213 (2003)

    Article  Google Scholar 

  30. U. Diebold, J. Lehman, T. Mahmoud, M. Kuhn, G. Leonardelli, W. Hebenstreit, M. Schmid, P. Varga, Surf. Sci. 411, 137 (1998)

    Article  ADS  Google Scholar 

  31. A. Sasahara, H. Uetsuka, H. Onishi, Surf. Sci. Lett. 529, L245 (2003)

    Article  ADS  Google Scholar 

  32. G.H. Enevoldsen, H.P. Pinto, A.S. Foster, M.C.R. Jensen, A. Kuhnle, M. Reichling, W.A. Hofer, J.V. Lauritsen, F. Besenbacher, Phys. Rev. B. 78, 045416 (2008)

    Article  ADS  Google Scholar 

  33. G.H. Enevoldsen, A.S. Foster, M.C. Christensen, J.V. Lauritsen, F. Besenbacher, Phys. Rev. B. 76, 205415 (2007)

    Article  ADS  Google Scholar 

  34. A. Yurtsever, Y. Sugimoto, M. Abe, S. Morita, Nanotechnology 21, 165702 (2010)

    Article  ADS  Google Scholar 

  35. K. Fukui, H. Onishi, Y. Iwasawa, Phys. Rev. Lett. 79, 4202 (1997)

    Article  ADS  Google Scholar 

  36. J.V. Lauritsen, A.S. Foster, G. Holesen, M.C. Christensen, A. Kuhnle, S. Helveg, J.R. Rostrup-Nielsen, B.S. Clausen, M. Reichling, F. Besenbacher, Nanotechnology 17, 3436 (2006)

    Article  ADS  Google Scholar 

  37. H.P. Pinto, G.H. Enevoldsen, F. Besenbacher, J.V. Lauritsen, A.S. Foster, Nanotechnology 20, 264020 (2009)

    Article  ADS  Google Scholar 

  38. J. Sader, S. Jarvis, Appl. Phys. Lett. 84, 1801 (2004)

    Article  ADS  Google Scholar 

  39. T. Minato et al., J. Chem. Phys. 130, 124502 (2009)

    Article  ADS  Google Scholar 

  40. A.T. Paxton, N.L. Thien, Phys. Rev. B. 57, 1579 (1998)

    Article  ADS  Google Scholar 

  41. A. Yurtsever, D. Fernandez-Torre, C. Gonzalez, P. Jelinek, P. Pou, Y. Sugimoto, M. Abe, R. Perez, S. Morita, Phys. Rev. B. 85, 125416 (2012)

    Article  ADS  Google Scholar 

  42. L. Kou, Z.M. Ma, Y.J. Li, Y. Naitoh, M. Komiyama, Y. Sugawara, Nanotechnology 26, 195701 (2015)

    Google Scholar 

  43. F.J. Giessibl, Phys. Rev. B. 56, 16010 (19977)

    Google Scholar 

  44. H. Holscher, U.D. Schwarz, R. Wiesendanger, Appl. Surf. Sci. 140, 344 (1999)

    Article  ADS  Google Scholar 

  45. F.J. Giessibl, H. Bielefeldt, Phys. Rev. B. 61, 9968 (2000)

    Article  ADS  Google Scholar 

  46. E. Arima, H.F. Wen, Y. Naitoh, Y.J. Li, Y. Sugawara, Rev. Sci. Instrum. 87, 093113 (2016)

    Article  ADS  Google Scholar 

  47. R.E. Tanner, M.R. Castell, G.A.D. Briggs, Surf. Sci. 412/413, 672 (1998)

    Google Scholar 

  48. G.H. Enevoldsen, H.P. Pinto, A.S. Foster, M.C.R. Jensen, W.A. Hofer, B. Hammer, J.V. Lauritsen, F. Besenbacher, Phys. Rev. Lett. 102, 136103 (2009)

    Article  ADS  Google Scholar 

  49. L. Kou, Y.J. Li, T. Kamijyo, Y. Naitoh, Y. Sugawara, Nanotechnology 27, 505704 (2016)

    Article  Google Scholar 

  50. T. Minato, Y. Sainoo, Y. Kim, H.S. Kato, K.I. Aika, M. Kawai, J. Zhao, H. Petek, T. Huang, W. He, B. Wang, Z. Wang, Y. Zhao, J. Yang, J.G. Hou, J. Chem. Phys. 130, 124502 (2009)

    Article  ADS  Google Scholar 

  51. M. Setvin, C. Franchini, X. Hao, M. Schmid, A. Janotti, M. Kaltak, C.G. Van de Walle, G. Kresse, U. Diebold, Phys. Rev. Lett. 113, 086402 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (JSPS) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) through MEXT/JSPS KAKENHI Grant Numbers JP16H06327, JP17H01061, and JP16H06504 for Scientific Research on Innovative Areas “Nano-Material Optical-Manipulation”. This work was also supported by National Natural Foundation of China (Number 91336110) and China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Sugawara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Y.J., Wen, H., Ma, Z.M., Kou, L., Naitoh, Y., Sugawara, Y. (2018). Kelvin Probe Force Microscopy with Atomic Resolution . In: Sadewasser, S., Glatzel, T. (eds) Kelvin Probe Force Microscopy. Springer Series in Surface Sciences, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-319-75687-5_14

Download citation

Publish with us

Policies and ethics