Skip to main content

Kelvin Probe Force Microscopy in Nanoscience and Nanotechnology

  • Chapter
Surface Science Tools for Nanomaterials Characterization

Abstract

Kelvin probe force microscopy (KPFM) is applicable to measure surface potential and work function in a localized nanoscale surface area. In this chapter, we describe the theory and measurement of KPFM and its applications in the characterization of inorganic nanostructure and nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kelvin L (1898) V. contact electricity of metals. London, Edinburgh, Dublin Philos Mag J Sci 46(278):82–120

    Article  Google Scholar 

  2. Zisman W (1932) A new method of measuring contact potential differences in metals. Rev Sci Instrum 3(7):367–370

    Article  Google Scholar 

  3. Melitz W, Shen J, Kummel AC, Lee S (2011) Kelvin probe force microscopy and its application. Surf Sci Rep 66(1):1–27

    Article  CAS  Google Scholar 

  4. Sadewasser S, Glatzel T (2012) Kelvin probe force microscopy. Springer, Heidelberg

    Book  Google Scholar 

  5. Nonnenmacher M, O’Boyle M, Wickramasinghe H (1991) Kelvin probe force microscopy. Appl Phys Lett 58:2921

    Article  Google Scholar 

  6. O’Boyle M, Hwang T, Wickramasinghe H (1999) Atomic force microscopy of work functions on the nanometer scale. Appl Phys Lett 74(18):2641–2642

    Article  Google Scholar 

  7. Yamauchi T, Tabuchi M, Nakamura A (2004) Size dependence of the work function in Inas quantum dots on Gaas (001) as studied by Kelvin force probe microscopy. Appl Phys Lett 84(19):3834–3836

    Article  CAS  Google Scholar 

  8. Ziegler D, Gava P, Güttinger J, Molitor F, Wirtz L, Lazzeri M, Saitta A, Stemmer A, Mauri F, Stampfer C (2011) Variations in the work function of doped single-and few-layer graphene assessed by Kelvin probe force microscopy and density functional theory. Phys Rev B 83(23):235434

    Article  Google Scholar 

  9. Sun H, Chu H, Wang J, Ding L, Li Y (2010) Kelvin probe force microscopy study on nanotriboelectrification. Appl Phys Lett 96(8):083112–083112-3

    Article  Google Scholar 

  10. Liu L, Li G (2010) Electrical characterization of single-walled carbon nanotubes in organic solar cells by Kelvin probe force microscopy. Appl Phys Lett 96:083302

    Article  Google Scholar 

  11. Yu Y-J, Zhao Y, Ryu S, Brus LE, Kim KS, Kim P (2009) Tuning the graphene work function by electric field effect. Nano Lett 9(10):3430–3434

    Article  CAS  Google Scholar 

  12. Colchero J, Gil A, Baró A (2001) Resolution enhancement and improved data interpretation in electrostatic force microscopy. Phys Rev B 64(24):245403

    Article  Google Scholar 

  13. Zerweck U, Loppacher C, Otto T, Grafström S, Eng LM (2005) Accuracy and resolution limits of Kelvin probe force microscopy. Phys Rev B 71(12):125424

    Article  Google Scholar 

  14. Jacobs H, Leuchtmann P, Homan O, Stemmer A (1998) Resolution and contrast in Kelvin probe force microscopy. J Appl Phys 84(3):1168–1173

    Article  CAS  Google Scholar 

  15. Ding L, Li Y, Chu H, Li C, Yang Z, Zhou W, Tang ZK (2007) High speed atomic force microscope lithography driven by electrostatic interaction. Appl Phys Lett 91(2):023121–023121-3

    Article  Google Scholar 

  16. Mesquida P, Stemmer A (2001) Attaching silica nanoparticles from suspension onto surface charge patterns generated by a conductive atomic force microscope tip. Adv Mater 13(18):1395–1398

    Article  CAS  Google Scholar 

  17. Lee G, Shin Y-H, Son JY (2009) Formation of self-assembled polyelectrolyte multilayer nanodots by scanning probe microscopy. J Am Chem Soc 131(5):1634–1635

    Article  CAS  Google Scholar 

  18. Seemann L, Stemmer A, Naujoks N (2007) Local surface charges direct the deposition of carbon nanotubes and fullerenes into nanoscale patterns. Nano Lett 7(10):3007–3012

    Article  CAS  Google Scholar 

  19. Palleau E, Sangeetha NM, Viau G, Marty J-D, Ressier L (2011) Coulomb force directed single and binary assembly of nanoparticles from aqueous dispersions by Afm nanoxerography. ACS Nano 5(5):4228–4235

    Article  CAS  Google Scholar 

  20. Yue S, Xueqiang Z, Ying W, Xuejiao Z, Jun H, Shouwu G, Yi Z (2013) Charge transfer between reduced graphene oxide sheets on insulating substrates. Appl Phys Lett 103(5):053107 (4 pp)–053107 (4 pp)

    Google Scholar 

  21. Verdaguer A, Cardellach M, Segura J, Sacha G, Moser J, Zdrojek M, Bachtold A, Fraxedas J (2009) Charging and discharging of graphene in ambient conditions studied with scanning probe microscopy. Appl Phys Lett 94(23):233105–233105-3

    Article  Google Scholar 

  22. Moser J, Verdaguer A, Jimenez D, Barreiro A, Bachtold A (2008) The environment of graphene probed by electrostatic force microscopy. Appl Phys Lett 92(12):123507–123507-3

    Article  Google Scholar 

  23. Guo LQ, Zhao XM, Bai Y, Qiao LJ (2012) Water adsorption behavior on metal surfaces and its influence on surface potential studied by in situ Spm. Appl Surf Sci 258(22):9087–9091

    Article  CAS  Google Scholar 

  24. Craig PP, Radeka V (1970) Stress dependence of contact potential: the Ac Kelvin method. Rev Sci Instrum 41(2):258–264

    Article  Google Scholar 

  25. Goryl M, Kolodziej J, Krok F, Piatkowski P, Such B, Szymonski M (2005) Epitaxial nanostructures assembled on Insb (001) by submonolayer deposition of gold. Microelec Eng 81(2):394–399

    Article  CAS  Google Scholar 

  26. Krok F, Sajewicz K, Konior J, Goryl M, Piatkowski P, Szymonski M (2008) Lateral resolution and potential sensitivity in Kelvin probe force microscopy: towards understanding of the sub-nanometer resolution. Phys Rev B 77(23):235427

    Article  Google Scholar 

  27. Shusterman S, Raizman A, Sher A, Paltiel Y, Schwarzman A, Lepkifker E, Rosenwaks Y (2007) Nanoscale mapping of strain and composition in quantum dots using Kelvin probe force microscopy. Nano Lett 7(7):2089–2093

    Article  CAS  Google Scholar 

  28. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7(11):699–712

    Article  CAS  Google Scholar 

  29. Xu M, Liang T, Shi M, Chen H (2013) Graphene-like two-dimensional materials. Chem Rev 113(5):3766–3798

    Article  CAS  Google Scholar 

  30. Li Y, Xu C-Y, Zhen L (2013) Surface potential and interlayer screening effects of few-layer Mos 2 nanoflakes. Appl Phys Lett 102(14):143110–143110-4

    Article  Google Scholar 

  31. Datta SS, Strachan DR, Mele EJ, Johnson ATC (2009) Surface potentials and layer charge distributions in few-layer graphene films. Nano Lett 9(1):7–11

    Article  CAS  Google Scholar 

  32. Jaafar M, López-Polín G, Gómez-Navarro C, Gómez-Herrero J (2012) Step like surface potential on few layered graphene oxide. Appl Phys Lett 101(26):263109

    Article  Google Scholar 

  33. Ago H, Kugler T, Cacialli F, Salaneck WR, Shaffer MS, Windle AH, Friend RH (1999) Work functions and surface functional groups of multiwall carbon nanotubes. J Phys Chem B 103(38):8116–8121

    Article  CAS  Google Scholar 

  34. Shiraishi M, Ata M (2001) Work function of carbon nanotubes. Carbon 39(12):1913–1917

    Article  CAS  Google Scholar 

  35. Suzuki S, Bower C, Watanabe Y, Zhou O (2000) Work functions and valence band states of pristine and Cs-intercalated single-walled carbon nanotube bundles. Appl Phys Lett 76(26):4007–4009

    Article  CAS  Google Scholar 

  36. Spadafora EJ, Saint-Aubin K, Celle C, Demadrille R, Grévin B, Simonato J-P (2012) Work function tuning for flexible transparent electrodes based on functionalized metallic single walled carbon nanotubes. Carbon 50(10):3459–3464

    Article  CAS  Google Scholar 

  37. Martel RA, Schmidt T, Shea H, Hertel T, Avouris P (1998) Single-and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 73:2447

    Article  CAS  Google Scholar 

  38. Tans SJ, Verschueren AR, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393(6680):49–52

    Article  CAS  Google Scholar 

  39. Derycke V, Martel R, Appenzeller J, Avouris P (2001) Carbon nanotube inter-and intramolecular logic gates. Nano Lett 1(9):453–456

    Article  CAS  Google Scholar 

  40. Derycke V, Martel R, Appenzeller J, Avouris P (2002) Controlling doping and carrier injection in carbon nanotube transistors. Appl Phys Lett 80:2773

    Article  CAS  Google Scholar 

  41. Cui X, Freitag M, Martel R, Brus L, Avouris P (2003) Controlling energy-level alignments at carbon nanotube/Au contacts. Nano Lett 3(6):783–787

    Article  CAS  Google Scholar 

  42. Filleter T, Emtsev K, Seyller T, Bennewitz R (2008) Local work function measurements of epitaxial graphene. Appl Phys Lett 93(13):133117–133117-3

    Article  Google Scholar 

  43. Casiraghi C, Pisana S, Novoselov K, Geim A, Ferrari A (2007) Raman fingerprint of charged impurities in graphene. Appl Phys Lett 91(23):233108–233108-3

    Article  Google Scholar 

  44. Yan J, Henriksen EA, Kim P, Pinczuk A (2008) Observation of anomalous phonon softening in bilayer graphene. Phys Rev Lett 101(13):136804

    Article  Google Scholar 

  45. Yan J, Zhang Y, Kim P, Pinczuk A (2007) Electric field effect tuning of electron–phonon coupling in graphene. Phys Rev Lett 98(16):166802

    Article  Google Scholar 

  46. Shi Y, Kim KK, Reina A, Hofmann M, Li L-J, Kong J (2010) Work function engineering of graphene electrode via chemical doping. ACS Nano 4(5):2689–2694

    Article  CAS  Google Scholar 

  47. Wang R, Wang S, Zhang D, Li Z, Fang Y, Qiu X (2010) Control of carrier type and density in exfoliated graphene by interface engineering. ACS Nano 5(1):408–412

    Article  CAS  Google Scholar 

  48. Bußmann BK, Ochedowski O, Schleberger M (2011) Doping of graphene exfoliated on Srtio3. Nanotechnology 22(26):265703

    Article  Google Scholar 

  49. Wang X, Xu J-B, Xie W, Du J (2011) Quantitative analysis of graphene doping by organic molecular charge transfer. J Phys Chem C 115(15):7596–7602

    Article  CAS  Google Scholar 

  50. Pearce R, Eriksson J, Iakimov T, Hultman L, Lloyd Spetz PA, Yakimova R (2013) On the differing sensitivity to chemical gating of single and double layer epitaxial graphene explored using scanning Kelvin probe microscopy. ACS Nano 7:4647–4656

    Article  CAS  Google Scholar 

  51. Zhou X, He S, Brown KA, Mendez-Arroyo J, Boey F, Mirkin CA (2013) Locally altering the electronic properties of graphene by nanoscopically doping it with rhodamine 6 g. Nano Lett 13(4):1616–1621

    CAS  Google Scholar 

  52. Sque SJ, Jones R, Briddon PR (2007) The transfer doping of graphite and graphene. Phys Status Solidi (a) 204(9):3078–3084

    Article  CAS  Google Scholar 

  53. Cherniavskaya O, Chen L, Islam MA, Brus L (2003) Photoionization of individual Cdse/Cds core/shell nanocrystals on silicon with 2-Nm oxide depends on surface band bending. Nano Lett 3(4):497–501

    Article  CAS  Google Scholar 

  54. Ludeke R, Cartier E (2001) Imaging of trapped charge in Sio 2 and at the Sio 2–Si interface. Appl Phys Lett 78(25):3998–4000

    Article  CAS  Google Scholar 

  55. Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on Tio2 surfaces: principles, mechanisms, and selected results. Chem Rev 95(3):735–758

    Article  CAS  Google Scholar 

  56. Sasahara A, Pang CL, Onishi H (2006) Probe microscope observation of platinum atoms deposited on the Tio2 (110)-(1 × 1) surface. J Phys Chem B 110(27):13453–13457

    Article  CAS  Google Scholar 

  57. Sasahara A, Pang CL, Onishi H (2006) Local work function of Pt clusters vacuum-deposited on a Tio2 surface. J Phys Chem B 110(35):17584–17588

    Article  CAS  Google Scholar 

  58. Haruta M, Yamada N, Kobayashi T, Iijima S (1989) Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J Catal 115(2):301–309

    Article  CAS  Google Scholar 

  59. Chung HJ, Yurtsever A, Sugimoto Y, Abe M, Morita S (2011) Kelvin probe force microscopy characterization of Tio2 (110)-supported Au clusters. Appl Phys Lett 99(12):123102

    Article  Google Scholar 

  60. Kim JY, Lee K, Coates NE, Moses D, Nguyen T-Q, Dante M, Heeger AJ (2007) Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317(5835):222–225

    Article  CAS  Google Scholar 

  61. Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4(11):864–868

    Article  CAS  Google Scholar 

  62. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells – enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270(5243):1789–1791

    Article  CAS  Google Scholar 

  63. Li C, Chen Y, Wang Y, Iqbal Z, Chhowalla M, Mitra S (2007) A fullerene–single wall carbon nanotube complex for polymer bulk heterojunction photovoltaic cells. J Mater Chem 17(23):2406–2411

    Article  CAS  Google Scholar 

  64. Liu L, Stanchina WE, Li G (2009) Effects of semiconducting and metallic single-walled carbon nanotubes on performance of bulk heterojunction organic solar cells. Appl Phys Lett 94(23):233309–233309-3

    Article  Google Scholar 

  65. Kymakis E, Alexandrou I, Amaratunga G (2003) High open-circuit voltage photovoltaic devices from carbon-nanotube-polymer composites. J Appl Phys 93(3):1764–1768

    Article  CAS  Google Scholar 

  66. Ren S, Bernardi M, Lunt RR, Bulovic V, Grossman JC, Gradecak S (2011) Toward efficient carbon nanotube/P3ht solar cells: active layer morphology, electrical, and optical properties. Nano Lett 11(12):5316–5321

    Article  CAS  Google Scholar 

  67. Lan F, Li G (2013) Direct observation of hole transfer from semiconducting polymer to carbon nanotubes. Nano Lett 13(5):2086–2091

    Article  CAS  Google Scholar 

  68. Dimitrakopoulos CD, Malenfant PR (2002) Organic thin film transistors for large area electronics. Adv Mater 14(2):99–117

    Article  CAS  Google Scholar 

  69. Burgi L, Richards T, Friend R, Sirringhaus H (2003) Close look at charge carrier injection in polymer field-effect transistors. J Appl Phys 94(9):6129–6137

    Article  CAS  Google Scholar 

  70. Dawidczyk T, Johns G, Ozgun R, Alley O, Andreou A, Markovic N, Katz H (2012) Kelvin probe microscopic visualization of charge storage at polystyrene interfaces with pentacene and gold. Appl Phys Lett 100(7):073305

    Article  Google Scholar 

  71. Avouris P (2002) Carbon nanotube electronics. Chem Phys 281(2):429–445

    Article  CAS  Google Scholar 

  72. McEuen PL, Fuhrer MS, Park H (2002) Single-walled carbon nanotube electronics. Nanotechnol, IEEE Trans 1(1):78–85

    Article  Google Scholar 

  73. Miyato Y, Kobayashi K, Matsushige K, Yamada H (2007) Surface potential investigation on single wall carbon nanotubes by Kelvin probe force microscopy and atomic force microscope potentiometry. Nanotechnology 18(8):084008

    Article  Google Scholar 

  74. Okigawa Y, Umesaka T, Ohno Y, Kishimoto S, Mizutani T (2008) Potential profile measurement of carbon nanotube fets based on the electrostatic force detection. Nano 3(01):51–54

    Article  CAS  Google Scholar 

  75. Lee N, Yoo J, Choi Y, Kang C, Jeon D, Kim D, Seo S, Chung H (2009) The interlayer screening effect of graphene sheets investigated by Kelvin probe force microscopy. Appl Phys Lett 95(22):222107–222107-3

    Article  Google Scholar 

  76. Küppers J, Wandelt K, Ertl G (1979) Influence of the local surface structure on the 5p photoemission of adsorbed xenon. Phys Rev Lett 43(13):928

    Article  Google Scholar 

  77. Wandelt K (1997) The local work function: concept and implications. Appl Surf Sci 111:1–10

    Article  CAS  Google Scholar 

  78. Bocquet F, Nony L, Loppacher C, Glatzel T (2008) Analytical approach to the local contact potential difference on (001) ionic surfaces: implications for Kelvin probe force microscopy. Phys Rev B 78(3):035410

    Article  Google Scholar 

  79. Arai T, Tomitori M (2004) Observation of electronic states on Si (111)-(7 × 7) through short-range attractive force with noncontact atomic force spectroscopy. Phys Rev Lett 93(25):256101

    Article  CAS  Google Scholar 

  80. Kitamura S, Iwatsuki M (1998) High-resolution imaging of contact potential difference with ultrahigh vacuum noncontact atomic force microscope. Appl Phys Lett 72(24):3154–3156

    Article  CAS  Google Scholar 

  81. Kitamura SI, Suzuki K, Iwatsuki M, Mooney C (2000) Atomic-scale variations in contact potential difference on Au/Si (111) 7 × 7 surface in ultrahigh vacuum. Appl Surf Sci 157(4):222–227

    Article  CAS  Google Scholar 

  82. Okamoto K, Sugawara Y, Morita S (2002) The elimination of the ‘Artifact’ in the electrostatic force measurement using a novel noncontact atomic force microscope/electrostatic force microscope. Appl Surf Sci 188(3):381–385

    Article  CAS  Google Scholar 

  83. Okamoto K, Yoshimoto K, Sugawara Y, Morita S (2003) Kpfm imaging of Si(111)5 root 3 × 5 root 3-Sb surface for atom distinction using Nc-Afm. Appl Surf Sci 210(1–2):128–133

    Article  CAS  Google Scholar 

  84. Enevoldsen GH, Glatzel T, Christensen MC, Lauritsen JV, Besenbacher F (2008) Atomic scale Kelvin probe force microscopy studies of the surface potential variations on the Tio(2)(110) surface. Phys Rev Lett 100(23):236104

    Article  CAS  Google Scholar 

  85. Gross L, Mohn F, Liljeroth P, Repp J, Giessibl FJ, Meyer G (2009) Measuring the charge state of an adatom with noncontact atomic force microscopy. Science 324(5933):1428–1431

    Article  CAS  Google Scholar 

  86. Leoni T, Guillermet O, Walch H, Langlais V, Scheuermann A, Bonvoisin J, Gauthier S (2011) Controlling the charge state of a single redox molecular switch. Phys Rev Lett 106(21):216103

    Article  Google Scholar 

  87. Mohn F, Gross L, Moll N, Meyer G (2012) Imaging the charge distribution within a single molecule. Nat Nanotechnol 7(4):227–231

    Article  CAS  Google Scholar 

  88. Walch H, Leoni T, Guillermet O, Langlais V, Scheuermann A, Bonvoisin J, Gauthier S (2012) Electromechanical switching behavior of individual molecular complexes of Cu and Ni on Nacl-covered Cu (111) and Ag (111). Phys Rev B 86(7):075423

    Article  Google Scholar 

  89. Liljeroth P, Repp J, Meyer G (2007) Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317(5842):1203–1206

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Luo, D., Sun, H., Li, Y. (2015). Kelvin Probe Force Microscopy in Nanoscience and Nanotechnology. In: Kumar, C.S.S.R. (eds) Surface Science Tools for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44551-8_4

Download citation

Publish with us

Policies and ethics