Skip to main content

Advertisement

Log in

Impacts of genotypic variants on survival following reoperation for recurrent glioblastoma

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Introduction

Recurrent glioblastoma (rGBM) prognosis is dismal. In the absence of effective adjuvant treatments for rGBM, re-resections remain prominent in our arsenal. This study evaluates the impact of reoperation on post-progression survival (PPS) considering rGBM genetic makeup.

Methods

To assess the genetic heterogeneity and treatment-related changes (TRC) roles in re-operated or medically managed rGBMs, we compiled demographic, clinical, histopathological, and next-generation genetic sequencing (NGS) characteristics of these tumors from 01/2005 to 10/2019. Survival data and reoperation were analyzed using conventional and random survival forest analysis (RSF).

Results

Patients harboring CDKN2A/B loss (p = 0.017) and KDR mutations (p = 0.031) had notably shorter survival. Reoperation or bevacizumab were associated with longer PPS (11.2 vs. 7.4-months, p = 0.006; 13.1 vs 6.2, p < 0.001). Reoperated patients were younger, had better performance status and greater initial resection. In 136/273 (49%) rGBMs undergoing re-operation, CDKN2A/B loss (p = 0.03) and KDR mutations (p = 0.02) were associated with shorter survival. In IDH-WT rGBMs with NGS data (n = 166), reoperation resulted in 7.0-month longer survival (p = 0.004) than those managed medically. This reoperation benefit was independently identified by RSF analysis. Stratification analysis revealed that EGFR-mutant, CDKN2A/B-mutant, NF1-WT, and TP53-WT rGBM IDH-WT subgroups benefit most from reoperation (p = 0.03). Lastly, whether or not TRC was prominent at re-operation does not have any significant impact on PPS (10.5 vs. 11.5-months, p = 0.77).

Conclusions

Maximal safe re-resection significantly lengthens PPS regardless of genetic makeup, but reoperations are especially beneficial for IDH-WT rGBMs with EGFR and CDKN2A/B mutations with TP53-WT, and NF1-WT. Histopathology at recurrence may be an imperfect gauge of disease severity at progression and the imaging progression may be more reflective of the prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Ostrom QT, Cioffi G, Gittleman H et al (2019) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro Oncol 21:v1–v100. https://doi.org/10.1093/neuonc/noz150

    Article  PubMed  PubMed Central  Google Scholar 

  2. Brennan CW, Verhaak RGW, McKenna A et al (2013) The somatic genomic landscape of glioblastoma. Cell 155:462. https://doi.org/10.1016/j.cell.2013.09.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773. https://doi.org/10.1056/NEJMoa0808710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. https://doi.org/10.1056/NEJMoa043330

    Article  CAS  Google Scholar 

  5. Wen PY, Weller M, Lee EQ et al (2020) Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol. https://doi.org/10.1093/neuonc/noaa106

    Article  PubMed  PubMed Central  Google Scholar 

  6. Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109. https://doi.org/10.1007/s00401-007-0243-4

    Article  PubMed  PubMed Central  Google Scholar 

  7. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  8. Esquenazi Y, Friedman E, Liu Z et al (2017) The survival advantage of “supratotal” resection of glioblastoma using selective cortical mapping and the subpial technique. Neurosurgery 81:275–288. https://doi.org/10.1093/neuros/nyw174

    Article  PubMed  Google Scholar 

  9. Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972. https://doi.org/10.1200/JCO.2009.26.3541

    Article  PubMed  Google Scholar 

  10. Brat DJ, Aldape K, Colman H et al (2018) cIMPACT-NOW update 3: recommended diagnostic criteria for “Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV.” Acta Neuropathol 136:805–810. https://doi.org/10.1007/s00401-018-1913-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Frampton GM, Fichtenholtz A, Otto GA et al (2013) Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol 31:1023–1031. https://doi.org/10.1038/nbt.2696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dono A, Ramesh AV, Wang E et al (2021) The role of RB1 alteration and 4q12 amplification in IDH-WT glioblastoma. Neuro-Oncol Adv. https://doi.org/10.1093/noajnl/vdab050

    Article  Google Scholar 

  13. Dono A, Mitra S, Shah M et al (2021) PTEN mutations predict benefit from tumor treating fields (TTFields) therapy in patients with recurrent glioblastoma. J Neurooncol 153:153–160. https://doi.org/10.1007/s11060-021-03755-1

    Article  CAS  PubMed  Google Scholar 

  14. Chaichana KL, Zadnik P, Weingart JD et al (2013) Multiple resections for patients with glioblastoma: prolonging survival. J Neurosurg 118:812–820. https://doi.org/10.3171/2012.9.JNS1277

    Article  PubMed  Google Scholar 

  15. Chen YR, Sole J, Ugiliweneza B et al (2018) National trends for reoperation in older patients with glioblastoma. World Neurosurg 113:e179–e189. https://doi.org/10.1016/j.wneu.2018.01.211

    Article  PubMed  Google Scholar 

  16. Delgado-Fernandez J, Garcia-Pallero MÁ, Blasco G et al (2017) Usefulness of reintervention in recurrent glioblastoma: an indispensable weapon for increasing survival. World Neurosurg 108:610–617. https://doi.org/10.1016/j.wneu.2017.09.062

    Article  PubMed  Google Scholar 

  17. Clarke JL, Ennis MM, Yung WKA et al (2011) Is surgery at progression a prognostic marker for improved 6-month progression-free survival or overall survival for patients with recurrent glioblastoma? Neuro Oncol 13:1118–1124. https://doi.org/10.1093/neuonc/nor110

    Article  PubMed  Google Scholar 

  18. Ortega A, Sarmiento JM, Ly D et al (2016) Multiple resections and survival of recurrent glioblastoma patients in the temozolomide era. J Clin Neurosci 24:105–111. https://doi.org/10.1016/j.jocn.2015.05.047

    Article  PubMed  Google Scholar 

  19. Nava F, Tramacere I, Fittipaldo A et al (2014) Survival effect of first- and second-line treatments for patients with primary glioblastoma: a cohort study from a prospective registry, 1997–2010. Neuro Oncol 16:719–727. https://doi.org/10.1093/neuonc/not316

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wann A, Tully PA, Barnes EH et al (2018) Outcomes after second surgery for recurrent glioblastoma: a retrospective case–control study. J Neurooncol 137:409–415. https://doi.org/10.1007/s11060-017-2731-2

    Article  PubMed  Google Scholar 

  21. Zanello M, Roux A, Ursu R et al (2017) Recurrent glioblastomas in the elderly after maximal first-line treatment: does preserved overall condition warrant a maximal second-line treatment? J Neurooncol 135:285–297. https://doi.org/10.1007/s11060-017-2573-y

    Article  CAS  PubMed  Google Scholar 

  22. Goldman DA, Hovinga K, Reiner AS et al (2018) The relationship between repeat resection and overall survival in patients with glioblastoma: a time-dependent analysis. J Neurosurg 129:1231–1239. https://doi.org/10.3171/2017.6.JNS17393

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhao Y-H, Wang Z-F, Pan Z-Y et al (2019) A meta-analysis of survival outcomes following reoperation in recurrent glioblastoma: time to consider the timing of reoperation. Front Neurol 10:1–10. https://doi.org/10.3389/fneur.2019.00286

    Article  Google Scholar 

  24. Barker FC, Chang SM, Gutin PH et al (1998) Survival and functional status after resection of recurrent glioblastoma multiforme. Neurosurgery 42:709–723. https://doi.org/10.1097/00006123-199804000-00013

    Article  PubMed  Google Scholar 

  25. Chen MW, Morsy AA, Liang S, Ng WH (2016) Re-do craniotomy for recurrent grade IV glioblastomas: impact and outcomes from the National Neuroscience Institute Singapore. World Neurosurg 87:439–445. https://doi.org/10.1016/j.wneu.2015.10.051

    Article  PubMed  Google Scholar 

  26. Tully PA, Gogos AJ, Love C et al (2016) Reoperation for recurrent glioblastoma and its association with survival benefit. Neurosurgery 79:678–689. https://doi.org/10.1227/NEU.0000000000001338

    Article  PubMed  Google Scholar 

  27. Azoulay M, Santos F, Shenouda G et al (2017) Benefit of re-operation and salvage therapies for recurrent glioblastoma multiforme: results from a single institution. J Neurooncol 132:419–426. https://doi.org/10.1007/s11060-017-2383-2

    Article  CAS  PubMed  Google Scholar 

  28. Franceschi E, Bartolotti M, Tosoni A et al (2015) The effect of re-operation on survival in patients with recurrent glioblastoma. Anticancer Res 35:1743–1748

    PubMed  Google Scholar 

  29. Ringel F, Pape H, Sabel M et al (2016) Clinical benefit from resection of recurrent glioblastomas: results of a multicenter study including 503 patients with recurrent glioblastomas undergoing surgical resection. Neuro Oncol 18:96–104. https://doi.org/10.1093/neuonc/nov145

    Article  PubMed  Google Scholar 

  30. Suchorska B, Weller M, Tabatabai G et al (2016) Complete resection of contrast-enhancing tumor volume is associated with improved survival in recurrent glioblastoma—results from the DIRECTOR trial. Neuro Oncol 18:549–556. https://doi.org/10.1093/neuonc/nov326

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jackson C, Choi J, Khalafallah AM et al (2020) A systematic review and meta-analysis of supratotal versus gross total resection for glioblastoma. J Neurooncol. https://doi.org/10.1007/s11060-020-03556-y

    Article  PubMed  Google Scholar 

  32. Chang SM, Parney IF, McDermott M et al (2003) Perioperative complications and neurological outcomes of first and second craniotomies among patients enrolled in the Glioma Outcome Project. J Neurosurg 98:1175–1181. https://doi.org/10.3171/jns.2003.98.6.1175

    Article  PubMed  Google Scholar 

  33. Quick J, Gessler F, Dützmann S et al (2014) Benefit of tumor resection for recurrent glioblastoma. J Neurooncol 117:365–372. https://doi.org/10.1007/s11060-014-1397-2

    Article  CAS  PubMed  Google Scholar 

  34. Mukherjee S, Wood J, Liaquat I et al (2020) Craniotomy for recurrent glioblastoma: is it justified? A comparative cohort study with outcomes over 10 years. Clin Neurol Neurosurg 188:105568. https://doi.org/10.1016/j.clineuro.2019.105568

    Article  PubMed  Google Scholar 

  35. Ali FS, Arevalo O, Zorofchian S et al (2019) Cerebral radiation necrosis: incidence, pathogenesis, diagnostic challenges, and future opportunities. Curr Oncol Rep. https://doi.org/10.1007/s11912-019-0818-y

    Article  PubMed  Google Scholar 

  36. Press RH, Zhong J, Gurbani SS et al (2019) The role of standard and advanced imaging for the management of brain malignancies from a radiation oncology standpoint. Neurosurgery 85:165–179. https://doi.org/10.1093/neuros/nyy461

    Article  PubMed  Google Scholar 

  37. Molinaro AM, Hervey-Jumper S, Morshed RA et al (2020) Association of maximal extent of resection of contrast-enhanced and non-contrast-enhanced tumor with survival within molecular subgroups of patients with newly diagnosed glioblastoma. JAMA Oncol 94143:495–503. https://doi.org/10.1001/jamaoncol.2019.6143

    Article  Google Scholar 

  38. Brat DJ, Aldape K, Colman H et al (2020) cIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomas. Acta Neuropathol 139:603–608. https://doi.org/10.1007/s00401-020-02127-9

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yan Y, Takayasu T, Hines G et al (2020) Landscape of genomic alterations in IDH wild-type glioblastoma identifies PI3K as a favorable prognostic factor. JCO Precision Oncol 4:575–584

    Article  Google Scholar 

  40. Dono A, Wang E, Lopez V et al (2020) Molecular characteristics and clinical features of multifocal glioblastoma. J Neurooncol. https://doi.org/10.1007/s11060-020-03539-z

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lassman AB, Pugh SL, Wang TJC et al (2019) A randomized, double-blind, placebo controlled phase 3 trial of depatuxizumab mafodotin (ABT-414) in epidermal growth factor receptor (EGFR) amplified (AMP) newly diagnosed glioblastomas (nGBM) in SNO 2019 ABSTRACTS. Neuro Oncol. https://doi.org/10.1093/neuonc/noz175

    Article  PubMed  PubMed Central  Google Scholar 

  42. Neftel C, Laffy J, Filbin MG et al (2019) An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178:835-849.e21. https://doi.org/10.1016/j.cell.2019.06.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Burford A, Little SE, Jury A et al (2013) Distinct phenotypic differences associated with differential amplification of receptor tyrosine kinase genes at 4q12 in glioblastoma. PLoS ONE. https://doi.org/10.1371/journal.pone.0071777

    Article  PubMed  PubMed Central  Google Scholar 

  44. Barthel FP, Johnson KC, Varn FS et al (2019) Longitudinal molecular trajectories of diffuse glioma in adults. Nature 576:112–120. https://doi.org/10.1038/s41586-019-1775-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

Research by NT is gunned by NINDS, NIDCD, UT STARS, and Medtronic. None of this funding is relevant to this work nor influenced its content. Research reported in this publication was supported by the National Cancer Institute of the National Institutes of Health under Award Number K08CA241651 (LYB). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

Study design: AD, NT; data collection AD, EH, TT; data analysis and visualization: PZ; data interpretation: AD, PZ, NT; manuscript preparation: AD, PZ, NT; manuscript critical review: AD, PZ, AIB, SH, JJZ, MBB, LYB, DHK, YE, NT; final manuscript approval: all authors.

Corresponding author

Correspondence to Nitin Tandon.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest.

Ethical approval

This study was approved by the institutional review board of The University of Texas Health Science Center at Houston and Memorial Hermann Hospital, Houston, TX following the 1964 Helsinki Declaration and its later amendments.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dono, A., Zhu, P., Holmes, E. et al. Impacts of genotypic variants on survival following reoperation for recurrent glioblastoma. J Neurooncol 156, 353–363 (2022). https://doi.org/10.1007/s11060-021-03917-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-021-03917-1

Keywords

Navigation