Journal of Neuro-Oncology

, Volume 136, Issue 1, pp 207–212 | Cite as

Imaging changes over 18 months following stereotactic radiosurgery for brain metastases: both late radiation necrosis and tumor progression can occur

  • Dylann Fujimoto
  • Rie von Eyben
  • Iris C. Gibbs
  • Steven D. Chang
  • Gordon Li
  • Griffith R. Harsh
  • Steven Hancock
  • Nancy Fischbein
  • Scott G. SoltysEmail author
Clinical Study


Following stereotactic radiosurgery (SRS) for brain metastases, the median time range to develop adverse radiation effect (ARE) or radiation necrosis is 7–11 months. Similarly, the risk of local tumor recurrence following SRS is < 5% after 18 months. With improvements in systemic therapy, patients are living longer and are at risk for both late (defined as > 18 months after SRS) tumor recurrence and late ARE, which have not previously been well described. An IRB-approved, retrospective review identified patients treated with SRS who developed new MRI contrast enhancement > 18 months following SRS. ARE was defined as stabilization/shrinkage of the lesion over time or pathologic confirmation of necrosis, without tumor. Local failure (LF) was defined as continued enlargement of the lesion over time or pathologic confirmation of tumor. We identified 16 patients, with a median follow-up of 48.2 months and median overall survival of 73.0 months, who had 19 metastases with late imaging changes occurring a median of 32.9 months (range 18.5–63.2 months) after SRS. Following SRS, 12 lesions had late ARE at a median of 33.2 months and 7 lesions had late LF occurring a median of 23.6 months. As patients with cancer live longer and as SRS is increasingly utilized for treatment of brain metastases, the incidence of these previously rare imaging changes is likely to increase. Clinicians should be aware of these late events, with ARE occurring up to 5.3 years and local failure up to 3.8 years following SRS in our cohort.


Brain metastases Stereotactic radiosurgery Adverse radiation effect Radiation necrosis Surveillance 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.


  1. 1.
    Miller JA, Bennett EE, Xiao R et al (2016) Association between radiation necrosis and tumor biology following stereotactic radiosurgery for brain metastasis. Int J Radiat Oncol. doi: 10.1016/j.ijrobp.2016.08.039 Google Scholar
  2. 2.
    Sneed PK, Mendez J, Vemer-van den Hoek JG et al (2015) Adverse radiation effect after stereotactic radiosurgery for brain metastases: incidence, time course, and risk factors. J Neurosurg 123:373–386. doi: 10.3171/2014.10.jns141610 CrossRefPubMedGoogle Scholar
  3. 3.
    Minniti G, Clarke E, Lanzetta G et al (2011) Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis. Radiat Oncol 6:48. doi: 10.1186/1748-717X-6-48 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kohutek ZA, Yamada Y, Chan TA et al (2015) Long-term risk of radionecrosis and imaging changes after stereotactic radiosurgery for brain metastases. J Neurooncol 125:149–156. doi: 10.1007/s11060-015-1881-3 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Minniti G, Scaringi C, Paolini S et al (2016) Single-fraction versus multifraction (3 × 9 Gy) stereotactic radiosurgery for large (> 2 cm) brain metastases: a comparative analysis of local control and risk of radiation-induced brain necrosis. Int J Radiat Oncol Biol Phys 95:1142–1148. doi: 10.1016/j.ijrobp.2016.03.013 CrossRefPubMedGoogle Scholar
  6. 6.
    Kocher M, Soffietti R, Abacioglu U et al (2011) Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: Results of the EORTC 22952–26001 study. J Clin Oncol 29:134–141. doi: 10.1200/JCO.2010.30.1655 CrossRefPubMedGoogle Scholar
  7. 7.
    Choi CYH, Chang SD, Gibbs IC et al (2012) Stereotactic radiosurgery of the postoperative resection cavity for brain metastases: prospective evaluation of target margin on tumor control. Int J Radiat Oncol Biol Phys 84:336–342. doi: 10.1016/j.ijrobp.2011.12.009 CrossRefPubMedGoogle Scholar
  8. 8.
    Shaw E, Scott C, Souhami L et al (2000) Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90-05. Int J Radiat Oncol 47:291–298. doi: 10.1016/S0360-3016(99)00507-6 CrossRefGoogle Scholar
  9. 9.
    Shultz DB, Modlin LA, Jayachandran P et al (2015) Repeat courses of stereotactic radiosurgery (SRS), deferring whole-brain irradiation, for new brain metastases after initial SRS. Int J Radiat Oncol 92:993–999. doi: 10.1016/j.ijrobp.2015.04.036 CrossRefGoogle Scholar
  10. 10.
    Minniti G, D’Angelillo RM, Scaringi C et al (2014) Fractionated stereotactic radiosurgery for patients with brain metastases. J Neurooncol 117:295–301. doi: 10.1007/s11060-014-1388-3 CrossRefPubMedGoogle Scholar
  11. 11.
    Johnson AG, Ruiz J, Hughes R et al (2015) Impact of systemic targeted agents on the clinical outcomes of patients with brain metastases. Oncotarget 6:18945–18955. doi: 10.18632/oncotarget.4153 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Brown PD, Jaeckle K, Ballman KV et al (2016) Effect of radiosurgery alone vs radiosurgery with whole brain radiation therapy on cognitive function in patients with 1 to 3 brain metastases. JAMA 316:401. doi: 10.1001/jama.2016.9839 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Chang EL, Wefel JS, Hess KR et al (2009) Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol 10:1037–1044. doi: 10.1016/S1470-2045(09)70263-3 CrossRefPubMedGoogle Scholar
  14. 14.
    Yamamoto M, Serizawa T, Shuto T et al (2014) Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study. Lancet Oncol 15:387–395. doi: 10.1016/S1470-2045(14)70061-0 CrossRefPubMedGoogle Scholar
  15. 15.
    Chao ST, Ahluwalia MS, Barnett GH et al (2013) Challenges with the diagnosis and treatment of cerebral radiation necrosis. Int J Radiat Oncol 87:449–457. doi: 10.1016/j.ijrobp.2013.05.015 CrossRefGoogle Scholar
  16. 16.
    Cicone F, Minniti G, Romano A et al (2015) Accuracy of F-DOPA PET and perfusion-MRI for differentiating radionecrotic from progressive brain metastases after radiosurgery. Eur J Nucl Med Mol Imaging 42:103–111. doi: 10.1007/s00259-014-2886-4 CrossRefPubMedGoogle Scholar
  17. 17.
    Ross DA, Sandler HM, Balter JM et al (2002) Imaging changes after stereotactic radiosurgery of primary and secondary malignant brain tumors. J Neurooncol 56:175–181. doi: 10.1023/A:1014571900854 CrossRefPubMedGoogle Scholar
  18. 18.
    Ricci PE, Karis JP, Heiserman JE et al (1998) Differentiating Recurrent Tumor from Radiation Necrosis: Time for Re-evaluation of Positron Emission Tomography? Am J Neuroradiol 19:407–413PubMedGoogle Scholar
  19. 19.
    Chao ST, Suh JH, Raja S et al (2001) The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 96:191–197. doi: 10.1002/ijc.1016 CrossRefPubMedGoogle Scholar
  20. 20.
    Chen W, Silverman DHS, Delaloye S et al (2006) 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 47:904–911PubMedGoogle Scholar
  21. 21.
    Mitsuya K, Nakasu Y, Horiguchi S et al (2010) Perfusion weighted magnetic resonance imaging to distinguish the recurrence of metastatic brain tumors from radiation necrosis after stereotactic radiosurgery. J Neurooncol 99:81–88. doi: 10.1007/s11060-009-0106-z CrossRefPubMedGoogle Scholar
  22. 22.
    Zach L, Guez D, Last D et al (2015) Delayed contrast extravasation MRI: a new paradigm in neuro-oncology. Neuro Oncol 17:457–465. doi: 10.1093/neuonc/nou230 CrossRefPubMedGoogle Scholar
  23. 23.
    Shin SS, Murdoch G, Hamilton RL et al (2015) Pathological response of cavernous malformations following radiosurgery. J Neurosurg 123:938–944. doi: 10.3171/2014.10.JNS14499 CrossRefPubMedGoogle Scholar
  24. 24.
    Crocker M, deSouza R, Epaliyanage P et al (2007) Masson’s tumour in the right parietal lobe after stereotactic radiosurgery for cerebellar AVM: case report and review. Clin Neurol Neurosurg 109:811–815. doi: 10.1016/j.clineuro.2007.07.005 CrossRefPubMedGoogle Scholar
  25. 25.
    Cha YJ, Nahm JH, Ko JE et al (2015) Pathological evaluation of radiation-induced vascular lesions of the brain: distinct from de novo cavernous hemangioma. Yonsei Med J 56:1714–1720. doi: 10.3349/ymj.2015.56.6.1714 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Dylann Fujimoto
    • 1
  • Rie von Eyben
    • 1
  • Iris C. Gibbs
    • 1
  • Steven D. Chang
    • 2
  • Gordon Li
    • 2
  • Griffith R. Harsh
    • 2
  • Steven Hancock
    • 1
  • Nancy Fischbein
    • 3
  • Scott G. Soltys
    • 1
    Email author
  1. 1.Department of Radiation Oncology, Stanford Cancer InstituteStanford UniversityStanfordUSA
  2. 2.Department of Neurosurgery, Stanford Cancer InstituteStanford UniversityStanfordUSA
  3. 3.Department of RadiologyStanford UniversityStanfordUSA

Personalised recommendations