Skip to main content

Advertisement

Log in

Characterization of the distribution, retention, and efficacy of internal radiation of 188Re-lipid nanocapsules in an immunocompromised human glioblastoma model

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Internal radiation strategies hold great promise for glioblastoma (GB) therapy. We previously developed a nanovectorized radiotherapy that consists of lipid nanocapsules loaded with a lipophilic complex of Rhenium-188 (LNC188Re-SSS). This approach resulted in an 83 % cure rate in the 9L rat glioma model, showing great promise. The efficacy of LNC188Re-SSS treatment was optimized through the induction of a T-cell immune response in this model, as it is highly immunogenic. However, this is not representative of the human situation where T-cell suppression is usually encountered in GB patients. Thus, in this study, we investigated the efficacy of LNC188Re-SSS in a human GB model implanted in T-cell deficient nude mice. We also analyzed the distribution and tissue retention of LNC188Re-SSS. We observed that intratumoral infusion of LNCs by CED led to their complete distribution throughout the tumor and peritumoral space without leakage into the contralateral hemisphere except when large volumes were used. Seventy percent of the 188Re-SSS activity was present in the tumor region 24 h after LNC188Re-SSS injection and no toxicity was observed in the healthy brain. Double fractionated internal radiotherapy with LNC188Re-SSS triggered survival responses in the immunocompromised human GB model with a cure rate of 50 %, which was not observed with external radiotherapy. In conclusion, LNC188Re-SSS can induce long-term survival in an immunosuppressive environment, highlighting its potential for GB therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

CED:

Convection enhanced-delivery

DMEM:

Dulbecco’s modified Eagle’s medium

Ext RT:

External radiotherapy

FCS:

Fetal calf serum

GB:

Glioblastoma

HBSS:

Hepes buffered saline solution

IST:

Increase in median survival time

LB:

B lymphocyte

LNCs:

Lipid nanocapsules

LNC188Re-SSS:

Lipid nanocapsules loaded with Rhenium-188

mAb:

Monoclonal antibody

MRI:

Magnetic resonance imaging

NK:

Natural killer

PBS:

Phosphate buffered saline

Vi:

Volume of injection

Vd:

Volume of distribution

References

  1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for Research and Treatment of Cancer Brain Tumour and Radiotherapy Groups, National Cancer Institute of Canada Clinical Trials Group (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

  2. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO, European Organisation for Research and Treatment of Cancer Brain Tumour and Radiation Oncology Groups, National Cancer Institute of Canada Clinical Trials Group (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466

  3. Vanpouille-Box C, Hindre F (2012) Nanovectorized radiotherapy: a new strategy to induce anti-tumor immunity. Front Oncol 2:136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Oh DS, Adamson DC, Kirkpatrick JP (2012) Targeted radiotherapy for malignant gliomas. Curr Drug Discov Technol 9(4):268–279

    Article  CAS  PubMed  Google Scholar 

  5. Barani IJ, Larson DA (2015) Radiation therapy of glioblastoma. Cancer Treat Res 163:49–73

    Article  PubMed  Google Scholar 

  6. von Neubeck C, Seidlitz A, Kitzler HH, Beuthien-Baumann B, Krause M (2015) Glioblastoma multiforme: emerging treatments and stratification markers beyond new drugs. Br J Radiol 88(1053):20150354

    Article  Google Scholar 

  7. Allard E, Hindre F, Passirani C, Lemaire L, Lepareur N, Noiret N, Menei P, Benoit JP (2008) 188Re-loaded lipid nanocapsules as a promising radiopharmaceutical carrier for internal radiotherapy of malignant gliomas. Eur J Nucl Med Mol Imaging 35(10):1838–1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vanpouille-Box C, Lacoeuille F, Belloche C, Lepareur N, Lemaire L, LeJeune JJ, Benoit JP, Menei P, Couturier OF, Garcion E, Hindre F (2011) Tumor eradication in rat glioma and bypass of immunosuppressive barriers using internal radiation with (188)Re-lipid nanocapsules. Biomaterials 32(28):6781–6790

    Article  CAS  PubMed  Google Scholar 

  9. Vanpouille-Box C, Lacoeuille F, Roux J, Aube C, Garcion E, Lepareur N, Oberti F, Bouchet F, Noiret N, Garin E, Benoit JP, Couturier O, Hindre F (2011) Lipid nanocapsules loaded with rhenium-188 reduce tumor progression in a rat hepatocellular carcinoma model. PLoS One 6(3):e16926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hureaux J, Lagarce F, Gagnadoux F, Rousselet MC, Moal V, Urban T, Benoit JP (2010) Toxicological study and efficacy of blank and paclitaxel-loaded lipid nanocapsules after i.v. administration in mice. Pharm Res 27(3):421–430

    Article  CAS  PubMed  Google Scholar 

  11. Lepareur N, Ardisson V, Noiret N, Boucher E, Raoul JL, Clement B, Garin E (2011) Automation of labelling of Lipiodol with high-activity generator-produced 188Re. Appl Radiat Isot 69(2):426–430

    Article  CAS  PubMed  Google Scholar 

  12. Guo R, Zhang M, Xi Y, Ma Y, Liang S, Shi S, Miao Y, Li B (2014) Theranostic studies of human sodium iodide symporter imaging and therapy using 188Re: a human glioma study in mice. PLoS One 9(7):e102011

    Article  PubMed  PubMed Central  Google Scholar 

  13. Srivastava SC (2012) Paving the way to personalized medicine: production of some promising theragnostic radionuclides at Brookhaven National Laboratory. Semin Nucl Med 42(3):151–163

    Article  PubMed  Google Scholar 

  14. Barth RF, Kaur B (2009) Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. J Neurooncol 94(3):299–312

    Article  PubMed  PubMed Central  Google Scholar 

  15. Stojiljkovic M, Piperski V, Dacevic M, Rakic L, Ruzdijic S, Kanazir S (2003) Characterization of 9L glioma model of the Wistar rat. J Neurooncol 63(1):1–7

    Article  PubMed  Google Scholar 

  16. Dubinski D, Wolfer J, Hasselblatt M, Schneider-Hohendorf T, Bogdahn U, Stummer W, Wiendl H, Grauer OM (2016) CD4 + T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients. Neuro. Oncol 18(6):807–818

    Google Scholar 

  17. See AP, Parker JJ, Waziri A (2015) The role of regulatory T cells and microglia in glioblastoma-associated immunosuppression. J Neurooncol 123(3):405–412

    Article  CAS  PubMed  Google Scholar 

  18. Clavreul A, Jean I, Preisser L, Chassevent A, Sapin A, Michalak S, Menei P (2009) Human glioma cell culture: two FCS-free media could be recommended for clinical use in immunotherapy. In Vitro Cell Dev Biol Anim 45(9):500–511

    Article  PubMed  Google Scholar 

  19. Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP (2002) A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm Res 19(6):875–880

    Article  CAS  PubMed  Google Scholar 

  20. Reardon DA, Quinn JA, Akabani G, Coleman RE, Friedman AH, Friedman HS, Herndon JE 2nd, McLendon RE, Pegram CN, Provenzale JM, Dowell JM, Rich JN, Vredenburgh JJ, Desjardins A, Sampson JH, Gururangan S, Wong TZ, Badruddoja MA, Zhao XG, Bigner DD, Zalutsky MR (2006) Novel human IgG2b/murine chimeric antitenascin monoclonal antibody construct radiolabeled with 131I and administered into the surgically created resection cavity of patients with malignant glioma: phase I trial results. J Nucl Med 47(6):912–918

    CAS  PubMed  Google Scholar 

  21. Casacó A, López G, García I, Rodríguez JA, Fernández R, Figueredo J, Torres L, Perera A, Batista J, Leyva R, Peña Y, Amador Z, González A, Estupiñan B, Coca M, Hernández A, Puig M, Iglesias M, Hernández A, Ramos M, Rodríquez L, Suarez N (2008) Phase I single-dose study of intracavitary-administered Nimotuzumab labeled with 188 Re in adult recurrent high-grade glioma. Cancer Biol Ther 7(3):333–339

    Article  PubMed  Google Scholar 

  22. Li L, Quang TS, Gracely EJ, Kim JH, Emrich JG, Yaeger TE, Jenrette JM, Cohen SC, Black P, Brady LW (2010) A Phase II study of anti-epidermal growth factor receptor radioimmunotherapy in the treatment of glioblastoma multiforme. J Neurosurg 113(2):192–198

    Article  PubMed  Google Scholar 

  23. Reulen HJ, Poepperl G, Goetz C, Gildehaus FJ, Schmidt M, Tatsch K, Pietsch T, Kraus T, Rachinger W (2015) Long-term outcome of patients with WHO Grade III and IV gliomas treated by fractionated intracavitary radioimmunotherapy. J Neurosurg 123(3):760–770

    Article  PubMed  Google Scholar 

  24. Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH (1994) Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 91(6):2076–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Allard E, Passirani C, Benoit JP (2009) Convection-enhanced delivery of nanocarriers for the treatment of brain tumors. Biomaterials 30(12):2302–2318

    Article  CAS  PubMed  Google Scholar 

  26. Jahangiri A, Chin AT, Flanigan PM, Chen R, Bankiewicz K, Aghi MK (2016) Convection-enhanced delivery in glioblastoma: a review of preclinical and clinical studies. J Neurosurg:1–10.

  27. Vogelbaum MA, Aghi MK (2015) Convection-enhanced delivery for the treatment of glioblastoma. Neuro. Oncol 17(Suppl 2):ii3–ii8

    Google Scholar 

  28. Healy AT, Vogelbaum MA (2015) Convection-enhanced drug delivery for gliomas. Surg Neurol Int 6(Suppl 1):S59–S67

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shultz MD, Wilson JD, Fuller CE, Zhang J, Dorn HC, Fatouros PP (2011) Metallofullerene-based nanoplatform for brain tumor brachytherapy and longitudinal imaging in a murine orthotopic xenograft model. Radiology 261(1):136–143

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kaluzova M, Bouras A, Machaidze R, Hadjipanayis CG (2015) Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab-conjugated iron-oxide nanoparticles. Oncotarget 6(11):8788–8806

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bernal GM, LaRiviere MJ, Mansour N, Pytel P, Cahill KE, Voce DJ, Kang S, Spretz R, Welp U, Noriega SE, Nunez L, Larsen G, Weichselbaum RR, Yamini B (2014) Convection-enhanced delivery and in vivo imaging of polymeric nanoparticles for the treatment of malignant glioma. Nanomedicine 10(1):149–157

    CAS  PubMed  Google Scholar 

  32. Hadjipanayis CG, Machaidze R, Kaluzova M, Wang L, Schuette AJ, Chen H, Wu X, Mao H (2010) EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res 70(15):6303–6312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen PY, Ozawa T, Drummond DC, Kalra A, Fitzgerald JB, Kirpotin DB, Wei KC, Butowski N, Prados MD, Berger MS, Forsayeth JR, Bankiewicz K, James CD (2013) Comparing routes of delivery for nanoliposomal irinotecan shows superior anti-tumor activity of local administration in treating intracranial glioblastoma xenografts. Neurooncology 15(2):189–197

    CAS  Google Scholar 

  34. Chen MY, Lonser RR, Morrison PF, Governale LS, Oldfield EH (1999) Variables affecting convection-enhanced delivery to the striatum: a systematic examination of rate of infusion, cannula size, infusate concentration, and tissue-cannula sealing time. J Neurosurg 90(2):315–320

    Article  CAS  PubMed  Google Scholar 

  35. Saucier-Sawyer JK, Seo YE, Gaudin A, Quijano E, Song E, Sawyer AJ, Deng Y, Huttner A, Saltzman WM (2016) Distribution of polymer nanoparticles by convection-enhanced delivery to brain tumors. J Control Release 232:103–112

    Article  CAS  PubMed  Google Scholar 

  36. Demaria S, Golden EB, Formenti SC (2015) Role of Local Radiation Therapy in Cancer Immunotherapy. JAMA Oncol 1(9):1325–1332

    Article  PubMed  Google Scholar 

  37. Sridharan V, Schoenfeld JD (2015) Immune effects of targeted radiation therapy for cancer. Discov Med 19(104):219–228

    PubMed  Google Scholar 

  38. Maier P, Hartmann L, Wenz F, Herskind C (2016) Cellular pathways in response to Ionizing radiation and their targetability for tumor radiosensitization. Int J Mol Sci 14:17 (1)

    Google Scholar 

  39. Illidge TM, Cragg MS, Fringes B, Olive P, Erenpreisa JA (2000) Polyploid giant cells provide a survival mechanism for p53 mutant cells after DNA damage. Cell Biol Int 24(9):621–633

    Article  CAS  PubMed  Google Scholar 

  40. Kaur E, Rajendra J, Jadhav S, Shridhar E, Goda JS, Moiyadi A, Dutt S (2015) Radiation-induced homotypic cell fusions of innately resistant glioblastoma cells mediate their sustained survival and recurrence. Carcinogenesis 36(6):685–695

    Article  CAS  PubMed  Google Scholar 

  41. Ivanov A, Cragg MS, Erenpreisa J, Emzinsh D, Lukman H, Illidge TM (2003) Endopolyploid cells produced after severe genotoxic damage have the potential to repair DNA double strand breaks. J Cell Sci 116(Pt 20):4095–4106

    Article  CAS  PubMed  Google Scholar 

  42. Erenpreisa J, Ivanov A, Wheatley SP, Kosmacek EA, Ianzini F, Anisimov AP, Mackey M, Davis PJ, Plakhins G, Illidge TM (2008) Endopolyploidy in irradiated p53-deficient tumour cell lines: persistence of cell division activity in giant cells expressing Aurora-B kinase. Cell Biol Int 32(9):1044–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Erenpreisa J, Salmina K, Huna A, Kosmacek EA, Cragg MS, Ianzini F, Anisimov AP (2011) Polyploid tumour cells elicit paradiploid progeny through depolyploidizing divisions and regulated autophagic degradation. Cell Biol Int 35(7):687–695

    Article  PubMed  Google Scholar 

  44. Mirzayans R, Andrais B, Scott A, Wang YW, Murray D (2013) Ionizing radiation-induced responses in human cells with differing TP53 status. Int J Mol Sci 14(11):22409–22435

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schwarz-Finsterle J, Scherthan H, Huna A, Gonzalez P, Mueller P, Schmitt E, Erenpreisa J, Hausmann M (2013) Volume increase and spatial shifts of chromosome territories in nuclei of radiation-induced polyploidizing tumour cells. Mutat Res 756(1–2):56–65

    Article  CAS  PubMed  Google Scholar 

  46. Lainé AL, Clavreul A, Rousseau A, Tétaud C, Vessieres A, Garcion E, Jaouen G, Aubert L, Guilbert M, Benoit JP, Toillon RA, Passirani C (2014) Inhibition of ectopic glioma tumor growth by a potent ferrocenyl drug loaded into stealth lipid nanocapsules. Nanomedicine 10(8):1667–1677

    PubMed  Google Scholar 

Download references

Ackowledgements

We thank neurosurgeons from CHU Angers for providing the Lab1 tumor sample. We also thank Dr Catherine Ibisch and Dr Jérôme Abadie (AMaROC, ONIRIS, Nantes), Pierre Legras and Jérôme Roux (Service Commun d’Animalerie Hospitalo-Universitaire, Angers), Pr Jean-Pierre Benoit and Aurélien Contini (INSERM U1066-MINT, Angers), Dr Florence Franconi (PRIMEX, Angers) and Dr Franck Lacoeuille (Médecine Nucléaire et Biophysique, CHU d'Angers) for allowing us to use their facilities. This work was supported by the French National Research Agency through the RADIOHEAD program (ANR-12-EMMA-0033-01), “La Région Pays-de-la-Loire” through the Nuclear Technology for Health project (NucSan) and IRAD programs, “La Ligue Nationale Contre le Cancer” through an “Equipe Labellisée 2012” grant, the “Institut National de la Santé et de la Recherche Médicale” (INSERM), the “Axe Vectorisation et Radiothérapies”, and the “Réseau Gliome Grand Ouest” (ReGGO) of the “Cancéropôle Grand-Ouest”. The co-authors of this manuscript are also members of the Labex IRON “Innovative Radiopharmaceuticals in Oncology and Neurology” as part of the French government program “Investissements d’Avenir”. A. Ci. received a fellowship from the NucSan program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Clavreul.

Ethics declarations

Conflict of interest

We have no potential conflicts of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11060_2016_2289_MOESM1_ESM.tif

Experimental design to analyze the LNC distribution in the orthotopic GB Lab1 model by fluorescence (LNC-DID) and autoradiography (LNC188Re-SSS). (TIF 931 KB)

11060_2016_2289_MOESM2_ESM.tif

Biodistribution of LNC188Re-SSS. A distribution study was carried out using two female nude-NMRI mice on D19 following Lab1 cell injection. A Vi of 5 µL LNC188Re-SSS was performed at a flow-rate of 0.5 µL/min. The animals were sacrificed 1 h (n = 1) and 24 h (n = 1) after injection. The organs were removed, washed, and weighed. The activity content of each organ was determined using a gamma counter (Packard Auto-Gamma 5000 series). Results are expressed as the percentage of the injected dose. (n = number of mice analyzed). (TIF 581 KB)

Supplementary material 3 (DOCX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cikankowitz, A., Clavreul, A., Tétaud, C. et al. Characterization of the distribution, retention, and efficacy of internal radiation of 188Re-lipid nanocapsules in an immunocompromised human glioblastoma model. J Neurooncol 131, 49–58 (2017). https://doi.org/10.1007/s11060-016-2289-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-016-2289-4

Keywords

Navigation