Advertisement

Metal Science and Heat Treatment

, Volume 61, Issue 3–4, pp 239–242 | Cite as

Microstructure and Mechanical Properties of an Al – Mg – Mn – Zr – Sc – B4C Deformable Composite Material

  • A. V. PozdnyakovEmail author
  • A. Yu. Churyumov
  • A. Lofti
  • I. Mohamed
  • R. Yu. Barkov
  • A. G. Voitenko
  • A. A. Chereshneva
Article
  • 22 Downloads

Mechanical stirring of particles into a melt is used to obtain a composite material based on alloy Al – 3.5% Mg – 0.4% Mn – 0.15% Zr – 0.15% Sc reinforced with particles of B4C. The microstructure, the phase composition, the density, the adaptability to rolling, and the mechanical properties of the composite material are determined. The material has a high corrosion resistance and a yield strength exceeding 245 MPa, which is higher than the yield strength of the steels used today for making spent-fuel storage racks.

Key words

composite material boron carbide mechanical properties microstructure corrosion resistance 

Notes

Acknowledgement

The work has been performed within Agreement No. G.2016/35 on target benefaction for research project on the topic “Creation of Novel Neutron-Absorbing Materials and Optimum Processes for Manufacturing Deformed Articles for the Nuclear Power Industry” concluded on 22.11.2016 between the NITU “MISiS” Endowment Foundation and NITU “MISiS”.

References

  1. 1.
    L. L. Pyatakova, M. V. Mozharov, M. A. Sirotkina, and T. A. Dyuzheva, “Effect of boron on the cold brittleness of medium-carbon steel,” Metal Sci. Heat Treat., 136(2), 152 – 154 (1971).CrossRefGoogle Scholar
  2. 2.
    R. K. Guseinov, “Properties of structural steel doped with boron,” Metal Sci. Heat Treat., 33(7), 536 – 540 (1991).CrossRefGoogle Scholar
  3. 3.
    A. Ya. Zaslavskii and T. L. Mushtakova, “Ductile properties of boron steels for cold die forging,” Metal Sci. Heat Treat., 34(3), 178 – 183 (1992).CrossRefGoogle Scholar
  4. 4.
    A. Canakci, F. Arslan, and T. Varol, “Effect of volume fraction and size of B4C particles on production and microstructure properties of B4C reinforced aluminum alloy composites,” Int. J. Cast Metals Res., 29(8), 954 – 960 (2013).Google Scholar
  5. 5.
    M. F. Ibrahim, H. R. Ammar, A. M. Samuel, et al., “Metallurgical parameters controlling matrix/B4C particulate interaction in aluminum-boron carbide metal matrix composites,” Int. J. Cast Metals Res., 26(6), 364 – 373 (2013).CrossRefGoogle Scholar
  6. 6.
    M. F. Ibrahim, H. R. Ammar, A. M. Samuel, et al., “Mechanical properties and fracture of Al – 15 vol.% B4C based metal matrix composites,” Int. J. Cast Metals Res., 27(1), 7 – 14 (2014)CrossRefGoogle Scholar
  7. 7.
    G. Bonnet, V. Rohr, X.-G. Chen, et al., “Use of Alcan’s Al-B4C metal matrix composites as neutron absorber material in TN International’s transportation and storage casks,” Packag. Storage Secur. Radioact. Mater., 20(3), 98 – 102 (2009).Google Scholar
  8. 8.
    H. S. Chen, W. X. Wang, Y. L. Li, et al., “The design, microstructure and tensile properties of B4C particulate reinforced 6061Al neutron absorber composites,” J. Alloys Compd., 632, 23 – 29 (2015).CrossRefGoogle Scholar
  9. 9.
    A. V. Pozdniakov, V. S. Zolotarevskiy, R. Yu. Barkov, et al., “Microstructure and material characterization of 6063/B4C and 1545K/B4C composites produced by two stir casting techniques for nuclear applications,” J. Alloys Compd., 664, 317 – 320 (2016).CrossRefGoogle Scholar
  10. 10.
    A. V. Pozdniakov, A. Lofty, A. Qadir, V. S. Zolotarevsliy, et al., “Effect of the B4C content on the structure and thermal expansion coefficient of the Al – 5% Cu alloy-based metal-matrix composite material,” Phys. Met. Metallogr., 117(8), 783 – 788 (2016).CrossRefGoogle Scholar
  11. 11.
    A. V. Pozdniakov, A. Lofty, A. Qadir, et al., “Development of Al – 5Cu/B4C composites with low coefficient of thermal expansion for automotive application,” Mater. Sci. Eng. A, 688, 1 – 8 (2017).CrossRefGoogle Scholar
  12. 12.
    GOST 11068–2001. Primary Aluminum [in Russian], IPK Izd. Standartov, Moscow (2002).Google Scholar
  13. 13.
    GOST 804–93. Ingot Primary Magnesium. Performance Specifications [in Russian], Mezhgosud. Sovet. Standard. Sertif. Metrol., Moscow (2004).Google Scholar
  14. 14.
    Qiaoli Lin, Ping Shen, Feng Qui, et al., “Wetting of polycrystalline B4C by molten Al at 1173 – 1473 K,” Scr. Mater., 60, 960 – 963 (2009).CrossRefGoogle Scholar
  15. 15.
    Haobo Wu, Fanhao Zengn, Tiechui Yuan, et al., “Wettability of 2519Al on B4C at 1000 – 1250°C and mechanical properties of infiltrated B4C – 2519Al composites,” Ceram. Int., 40, 2073 – 2081 (2014).CrossRefGoogle Scholar
  16. 16.
    A. Vinogradov, A. Washikita, K. Kitagawa, and V. I. Kopylov, “Fatigue life of fine-grain Al – Mg – Sc alloys produced by equal-channel angular pressing,” Mater. Sci. Eng. A, 349, 318 – 326 (2003).CrossRefGoogle Scholar
  17. 17.
    E. A. Mohamed and A. Yu. Churyumov, “Study of the microstructure and properties of Al-based composites reinforced by SiC particles after squeeze casting,” Phys. Met. Metallogr., 117(10), 1054 – 1060 (2016).CrossRefGoogle Scholar
  18. 18.
    E. A. M. Shalaby, A. Yu. Churyumov, and A. N. Solonin, “Preparation and characterization of hybrid A359/(SiC + Si3N4) composites synthesized by stir/squeeze casting techniques,” Mater. Sci. Eng. A, 674, 18 – 24 (2016).CrossRefGoogle Scholar
  19. 19.
    V. S. Zolotarevskiy, R. I. Dobrojinskaja, V. V. Cheverikin, et al., “Evolution of structure and mechanical properties of Al – 4.7Mg – 0.32 Mn – 0.21 Sc – 0.09 Zr alloy sheets after accumulated deformation during rolling,” Phys. Met. Metallogr., 117(11), 1163 – 1169 (2016).CrossRefGoogle Scholar
  20. 20.
    V. S. Zolotarevskiy, R. I. Dobrojinskaja, V. V. Cheverikin, et al., “Strength and substructure of Al – 4.7 Mg – 0.32 Mn – 0.21 Sc – 0.09 Zr alloy sheets,” Phys. Met. Metallogr., 118(4), 407 – 414 (2017).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. V. Pozdnyakov
    • 1
    Email author
  • A. Yu. Churyumov
    • 1
  • A. Lofti
    • 1
  • I. Mohamed
    • 1
  • R. Yu. Barkov
    • 1
  • A. G. Voitenko
    • 1
  • A. A. Chereshneva
    • 1
  1. 1.National Research Technological University “MISiS,”MoscowRussia

Personalised recommendations