Skip to main content
Log in

The Surface and Interface Effects on the CoS2-FeS2 Interfacial Films

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The requirement of the continuous reduction of the device size prompts the development of the low-dimensional materials. The structural, electronic, and magnetic properties of CoS2-FeS2 interface thin films are studied by first principles calculations considering spin polarization. The low-dimensional SS-Fe-terminated and SS-SS-terminated CoS2-FeS2 interfacial thin films are half-metallic and therefore are potential materials to be applied in spintronics. Both the partial density of states and Bader charge states of atoms are more affected by the surface effect than by the interface effect for all the interfacial thin films. The magnetic moment of the CoS2-FeS2 interface thin films is mainly distributed on Co atoms on the CoS2 side, and the changes of magnetic moment of the atoms near the surface are more obvious than those near the interface. The magnetic charge density of Fe atoms in the metallic interfacial thin films is more obvious than that in the half-metallic interface films. The individual CoS2 (FeS2) film and the SiO2 substrate affect the property of the corresponding CoS2-FeS2 interfacial thin film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Day-Roberts, E., Birol, T., Fernandes, R.M.: Contrasting ferromagnetism in pyrite FeS2 induced by chemical doping versus electrostatic gating. Phys. Rev. Mater. 4, 054405 (2020)

  2. Chattopadhyay, T., Burlet, P., Brown, P.J.: Magnetic structure of MnS2: single-k or multiple-k, collinear or helical spin density wave?. J. Phys.: Condens. Matter. 3, 5555 (1991)

  3. Lin, M.S., Hacker, H.: Antiferromagnetic transitions in MnS2 and MnTe2. Solid State Commun. 6, 687–689 (1968)

    Article  ADS  Google Scholar 

  4. Kimber, S.A.J., Chatterji, T.: Spin-driven symmetry breaking in the frustrated fcc pyrite MnS2. J. Phys.: Condens. Matter. 27, 226003 (2015)

  5. Matsuura, M., Endoh, Y., Hiraka, H., Yamada, K., Mishchenko, A.S., Nagaosa, N., Solovyev, I.V.: Classical and quantum spin dynamics in the fcc antiferromagnet NiS2 with frustration. Phys. Rev. B. 68, 094409 (2003)

  6. Schuster, C., Gatti, M., Rubio, A.: Electronic and magnetic properties of NiS2, NiSSe and NiSe2 by a combination of theoretical methods. Eur. Phys. J. B. 85, 325 (2012)

    Article  ADS  Google Scholar 

  7. Yano, S., Louca, D., Yang, J., Chatterjee, U., Bugaris, D.E., Chung, D.Y., Peng, L., Grayson, M., Kanatzidis, M.G.: Magnetic structure of NiS2−xSex. Phys. Rev. B. 93, 024409 (2016)

  8. Bither, T., Prewitt, C., Gillson, J., Bierstedt, P., Flippen, R., Young, H.: New transition metal dichalcogenides formed at high pressure. Solid State Commun. 4, 533 (1966)

    Article  ADS  Google Scholar 

  9. Ueda, H., Nohara, M., Kitazawa, K., Takagi, H., Fujimori, A., Mizokawa, T., Yagi, T.: Copper pyrites CuS2 and CuSe2 as anion conductors. Phys. Rev. B. 65, 155104 (2002)

  10. Bullett, D.W.: Electronic structure of 3d pyrite- and marcasite-type sulphides. J. Phys. C. 15, 6163 (1982)

    Article  ADS  Google Scholar 

  11. Zhao, G.L., Callaway, J., Hayashibara, M.: Electronic structures of iron and cobalt pyrites. Phys. Rev. B. 48, 15781 (1993)

    Article  ADS  Google Scholar 

  12. Banjara, D., Malozovsky, Y., Franklin, L., Bagayoko, D.: First-principles studies of electronic, transport and bulk properties of pyrite FeS2. AIP Adv. 8, 025212 (2018)

  13. Liu, J.J., Xu, A.J., Meng, Y., He, Y.R., Ren, P.J., Guo, W.P., Peng, Q., Yang, Y., Jiao, H.J., Li, Y.W., Wen, X.D.: From predicting to correlating the bonding properties of iron sulfide phases. Comp. Mater. Sci. 164, 99–107 (2019)

    Article  Google Scholar 

  14. Liu, S.Q., Li, Y.B., Liu, J.M., Shi, Y.L.: First-principles study of sulfur isotope fractionation in pyrite-type disulfides. Am. Mineral. 100, 203–208 (2015)

    Article  ADS  Google Scholar 

  15. Ray, D., Voigt, B., Manno, M., Leighton, C., Aydil, E.S., Gagliardi, L.: Sulfur vacancy clustering and its impact on electronic properties in pyrite FeS2. Chem. Mater. 32, 4820–4831 (2020)

    Article  Google Scholar 

  16. Leighton, C., Manno, M., Cady, A., Freeland, J.W., Wang, L., Umemoto, K., Wentzcovitch, R.M., Chen, T.Y., Chien, C.L., Kuhns, P.L., Hoch, M.J.R., Reyes, A.P., Moulton, W.G., Dahlberg, E.D., Checkelsky, J., Eckert, J.: Composition controlled spin polarization in Co1−xFexS2 alloys. J. Phys.: Condens. Matter. 19, 315219 (2007)

  17. Ramesha, K., Seshadri, R., Ederer, C., He, T., Subramanian M.A.: Experimental and computational investigation of structure and magnetism in pyrite Co1−xFexS2: Chemical bonding and half-metallicity. Phys. Rev. B. 70, 214409 (2004)

  18. Guo, S., Young, D.P., Macaluso, R.T., Browne, D.A., Henderson, N.L., Chan, J.Y., Henry, L.L., DiTusa, J.F.: Discovery of the Griffiths phase in the itinerant magnetic semiconductor Fe1−xCoxS2. Phys. Rev. Lett. 100, 017209 (2008)

  19. Hu, J., Zhang, Y., Law, M., Wu, R.: First-principles studies of the electronic properties of native and substitutional anionic defects in bulk iron pyrite. Phys. Rev. B. 85, 085203 (2012)

  20. Mazin, I.I.: Robust half metalicity in FexCo1−xS2. Appl. Phys. Lett. 77, 3000 (2000)

    Article  ADS  Google Scholar 

  21. Nazir, S., Schwingenschlögl, U.: The interface of the ferromagnetic metal CoS2 and the nonmagnetic semiconductor FeS2. Appl. Phys. Lett. 97, 183113 (2010)

  22. Nazir, S., Schwingenschlögl, U.: Virtual half-metallicity at the CoS2/FeS2 interface induced by strain. RSC Adv. 3, 4518–4522 (2013)

    Article  ADS  Google Scholar 

  23. Li, X.L., Wu, X.J.: Two-dimensional monolayer designs for spintronics applications. Wires. Comput. Mol. Sci. 6, 441–455 (2016)

    Article  Google Scholar 

  24. Wei, S.K., Zheng, S.Q., Wen, X.L., Xie, C., Liang, J.X.: A novel antiferromagnetic semiconductor hidden in pyrite. Comp. Mater. Sci. 183, 109852 (2020)

  25. Feng, B.H., Ding, Z.J., Meng, S., Yao, Y.G., He, X.Y., Cheng, P., Chen, L., Wu, K.H.: Evidence of silicene in honeycomb structures of silicon on Ag (111). Nano. Lett. 12, 3507 (2012)

    Article  ADS  Google Scholar 

  26. Ni, Z.Y., Liu, Q.H., Tang, K.C., Zheng, J.X., Zhou, J., Qin, R., Gao, Z.X., Yu, D.P., Lu, J.: Tunable bandgap in silicene and germanene. Nano. Lett. 12, 113 (2012)

    Article  ADS  Google Scholar 

  27. Vogt, P., Padova, P.D., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M.C., Resta, A., Ealet, B., Lay, G.L.: Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108, 155501 (2012)

  28. Zhang, S.H., Zhou, J., Wang, Q., Jena, P.: Beyond graphitic carbon nitride: nitrogen-rich penta-CN2 sheet. J. Phys. Chem. C 120, 3993 (2016)

    Article  Google Scholar 

  29. Li, F.Y., Tu, K.X., Zhang, H.J., Chen, Z.F.: Flexible structural and electronic properties of a pentagonal B2C monolayer via external strain: a computational investigation. Phys. Chem. Chem. Phys. 17, 24151 (2015)

    Article  Google Scholar 

  30. Liu, Z., Wang, H.D., Sun, J.Y., Sun, R.J., Wang, Z.F., Yang, J.L.: Penta-Pt2N4: an ideal two-dimensional material for nanoelectronics. Nanoscale. 10, 16169 (2018)

    Article  Google Scholar 

  31. Oyedele, A.D., Yang, S.Z., Liang, L.B., Puretzky, A.A., Wang, K., Zhang, J.J., Yu, P., Pudasaini, P.R., Ghosh, A.W., Liu, Z., Rouleau, C.M., Sumpter, B.G., Chisholm, O.M.F., Zhou, W., Rack, O.P.D., Geohegan, D.B., Xiao, K.: PdSe2: pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc. 139, 14090–14097 (2017)

    Article  Google Scholar 

  32. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  33. Liu, L., Kankam, I., Zhuang, H.L.L.: Single-layer antiferromagnetic semiconductor CoS2 with pentagonal structure. Phys. Rev. B 98, 205425 (2018)

  34. Ma, Y., Kou, L., Li, X., Dai, Y., Heine, T.: Room temperature quantum spin Hall states in two-dimensional crystals composed of pentagonal rings and their quantum wells. NPG Asia Mater. 8, e264 (2016)

  35. Chow, W.L., Yu, P., Liu, F.C., Hong, J.H., Wang, X.L., Zeng, Q.S., Hsu, C.H., Zhu, C., Zhou, J.D., Wang, X.W., Xia, J., Yan, J.X., Chen, Y., Wu, D., Yu, T., Shen, Z.X., Lin, H., Jin, C.H., Tay, B.K., Liu, Z.: High mobility 2D palladium diselenide field-effect transistors with tunable ambipolar characteristics. Adv. Mater. 29, 1602969 (2017)

    Article  Google Scholar 

  36. Liu, L., Kankam, I., Zhuang, H.L.: Can an element form a two-dimensional nanosheet of type 15 pentagons?. Comput. Mater. Sci. 154, 37–40 (2018)

    Article  Google Scholar 

  37. Liu, L., Kankam, I., Zhuang, H.L.: Ab initio playing of pentagonal puzzles. Electron. Struct. 1, 015004 (2019)

  38. Liu, L., Zhuang, H.L.:PtP2: An example of exploring the hidden Cairo tessellation in the pyrite structure for discovering novel two-dimensional materials. Phys. Rev. Mater. 2, 114003 (2018)

  39. Singh, R., Ahmad, F., Nazeer, K., Kumar, R., Kumar, N., Ojha, A.K., Kushvaha, S.S., Kumar, P.: Material study of Co2CrAl Heusler alloy magnetic thin film and Co2CrAl/n-si Schottky junction device. J. Electron. Mater. 49, 3652–3658 (2020)

    Article  ADS  Google Scholar 

  40. Hou, Y.H., Chen, X., Guo, X.L., Li, W., Huang, Y.L., Tao, X.M.: Effects of intrinsic defects and doping on SrFe12O19: a first-principles exploration of the structural, electronic and magnetic properties. J. Magn. Magn. Mater. 538, 168257 (2021)

  41. Ameri, I., Boularaf, A., Drief, F., Zaoui, A., Kacimi, S.: Ab-initio study of magnetic and electronic properties of the perovskites RFeO3: 4f-R valence electrons effects. J. Magn. Magn. Mater. 537, 168214 (2021)

  42. Batashev, I., de Wijs, G.A., van Dijk, N.H., Brück, E.: Lithiation of the Fe2P-based magnetocaloric materials: a first-principles study. J. Magn. Magn. Mater. 537, 168179 (2021)

  43. Maruf, A.A., Ramker, A., Valloppilly, S., Shand, P.M., Lukashev, P.V., Kharel, P.: Electronic, structural and magnetic properties of Mn(1+x)Pt(1-x)Sb. J. Magn. Magn. Mater. 537, 168234 (2021)

  44. Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)

    Article  Google Scholar 

  45. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab-initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169–11186 (1996)

    ADS  Google Scholar 

  46. Kresse, G., Hafner, J.: Ab-initio molecular dynamics for liquid metals. Phys. Rev. B. 47, 558–561 (1993)

    Article  ADS  Google Scholar 

  47. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented wave method. Phys. Rev. B. 59, 1758–1775 (1999)

    Article  ADS  Google Scholar 

  48. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  49. Hu, J., Zhang, Y.N., Law, M., Wu, R.Q.: First-principles studies of the electronic properties of native and substitutional anionic defects in bulk iron pyrite. Phys. Rev. B. 85, 085203 (2012)

  50. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B. 13, 5188–5192 (1976)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work was carried out at Shanxi Supercomputing Center of China, and the calculations were performed on TianHe-2.

Funding

Supported by Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (Grant No. 2020L0628), Program for the (Reserved) Discipline Leaders of Taiyuan Institute of Technology, and the Fundamental Research Funds for the Central Universities (Grant No. 2017TS004, 2017TS006, and GK201704005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Ying Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, ZY., Wei, X., Zhao, JY. et al. The Surface and Interface Effects on the CoS2-FeS2 Interfacial Films. J Supercond Nov Magn 34, 2983–2998 (2021). https://doi.org/10.1007/s10948-021-06034-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-06034-2

Keywords

Navigation