Skip to main content
Log in

Tunable magneto-Seebeck effect in Co2FeSi/MgO/Co2FeSi heterostructure via optimized interfacial engineering

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Enhancing the tunneling magneto-Seebeck (TMS) ratio and uncovering its underlying mechanism are greatly demanded in spin caloritronics. The magnitude and sign of the TMS effect depend on the type of atom and the stacking order of atoms at the interfaces. Herein, we demonstrate that TMS ratios can be effectively manipulated by altering heterogonous or homogeneous interface through decoration on the CoFeSi (001) surface inserted on the MgO insulating layers. The maximum TMS ratio of pure Co2/O termination is 4565% at 800 K. Notably, the TMS ratio of the FeSi/O termination has two peak values, of which the maximum could reach up to −3290% at 650 K. By comparing two different atom arrangements at the interface, we reveal that the sign and symbol of the TMS ratio can be controlled by the temperature and different atomic configurations at the Co2FeSi/MgO interface. Furthermore, the spin-Seebeck coefficient up to ∼150 µV/K is also possible when we select suitable terminations and temperatures. These findings will provide useful insights into how to control the sign and symbol of the TMS ratio and accordingly stimulate the development field of magneto-thermoelectric power and spin caloritronic devices based on the magneto-Seebeck effect in Heusler-based metallic multilayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Prinz, Science 282, 1660 (1998).

    Article  Google Scholar 

  2. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).

    Article  ADS  Google Scholar 

  3. I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004), arXiv: cond-mat/0405528.

    Article  ADS  Google Scholar 

  4. G. E. W. Bauer, E. Saitoh, and B. J. van Wees, Nat. Mater. 11, 391 (2012), arXiv: 1107.4395.

    Article  ADS  Google Scholar 

  5. M. Walter, J. Walowski, V. Zbarsky, M. Münzenberg, M. Schäfers, D. Ebke, G. Reiss, A. Thomas, P. Peretzki, M. Seibt, J. S. Moodera, M. Czerner, M. Bachmann, and C. Heiliger, Nat. Mater. 10, 742 (2011), arXiv: 1104.1765.

    Article  ADS  Google Scholar 

  6. W. Lin, M. Hehn, L. Chaput, B. Negulescu, S. Andrieu, F. Montaigne, and S. Mangin, Nat. Commun. 3, 744 (2012), arXiv: 1109.3421.

    Article  ADS  Google Scholar 

  7. B. Flebus, G. E. W. Bauer, R. A. Duine, and Y. Tserkovnyak, Phys. Rev. B 96, 094429 (2017), arXiv: 1707.00674.

    Article  ADS  Google Scholar 

  8. J. F. Sierra, I. Neumann, J. Cuppens, B. Raes, M. V. Costache, and S. O. Valenzuela, Nat. Nanotech. 13, 107 (2018), arXiv: 1804.09423.

    Article  ADS  Google Scholar 

  9. J. Han, Y. Feng, K. Yao, and G. Y. Gao, Appl. Phys. Lett. 111, 132402 (2017).

    Article  ADS  Google Scholar 

  10. S. Picozzi, A. Continenza, and A. J. Freeman, Phys. Rev. B 66, 094421 (2002).

    Article  ADS  Google Scholar 

  11. H. C. Kandpal, G. H. Fecher, C. Felser, and G. Schonhense, Phys. Rev. B 73, 094422 (2006), arXiv: cond-mat/0601671.

    Article  ADS  Google Scholar 

  12. S. Khosravizadeh, S. J. Hashemifar, and H. Akbarzadeh, Phys. Rev. B 79, 235203 (2009).

    Article  ADS  Google Scholar 

  13. H. Liu, Y. Honda, T. Taira, K. Matsuda, M. Arita, T. Uemura, and M. Yamamoto, Appl. Phys. Lett. 101, 132418 (2012).

    Article  ADS  Google Scholar 

  14. I. Galanakis, P. H. Dederichs, and N. Papanikolaou, Phys. Rev. B 66, 174429 (2002), arXiv: cond-mat/0205129.

    Article  ADS  Google Scholar 

  15. G. M. Stephen, C. Lane, G. Buda, D. Graf, S. Kaprzyk, B. Barbiellini, A. Bansil, and D. Heiman, Phys. Rev. B 99, 224207 (2019), arXiv: 1906.10222.

    Article  ADS  Google Scholar 

  16. C. Uher, J. Yang, S. Hu, D. T. Morelli, and G. P. Meisner, Phys. Rev. B 59, 8615 (1999).

    Article  ADS  Google Scholar 

  17. P. Larson, S. D. Mahanti, S. Sportouch, and M. G. Kanatzidis, Phys. Rev. B 59, 15660 (1999).

    Article  ADS  Google Scholar 

  18. H. Y. Jia, X. F. Dai, L. Y. Wang, R. Liu, X. T. Wang, P. P. Li, Y. T. Cui, and G. D. Liu, AIP Adv. 4, 047113 (2014).

    Article  ADS  Google Scholar 

  19. N. Liebing, S. Serrano-Guisan, K. Rott, G. Reiss, J. Langer, B. Ocker, and H. W. Schumacher, Phys. Rev. Lett. 107, 177201 (2011), arXiv: 1104.0537.

    Article  ADS  Google Scholar 

  20. V. P. Amin, J. Zemen, J. Železný, T. Jungwirth, and J. Sinova, Phys. Rev. B 90, 140406 (2014), arXiv: 1404.5575.

    Article  ADS  Google Scholar 

  21. Y. Ohnuma, M. Matsuo, and S. Maekawa, Phys. Rev. B 94, 184405 (2016), arXiv: 1608.06333.

    Article  ADS  Google Scholar 

  22. T. Böhnert, S. Serrano-Guisan, E. Paz, B. Lacoste, R. Ferreira, and P. P. Freitas, J. Phys.-Condens. Matter 29, 185303 (2017).

    Article  ADS  Google Scholar 

  23. T. Böhnert, R. Dutra, R. L. Sommer, E. Paz, S. Serrano-Guisan, R. Ferreira, and P. P. Freitas, Phys. Rev. B 95, 104441 (2017).

    Article  ADS  Google Scholar 

  24. A. Boehnke, U. Martens, C. Sterwerf, A. Niesen, T. Huebner, M. von der Ehe, M. Meinert, T. Kuschel, A. Thomas, C. Heiliger, M. Münzenberg, and G. Reiss, Nat. Commun. 8, 1626 (2017), arXiv: 1707.00505.

    Article  ADS  Google Scholar 

  25. T. Huebner, A. Boehnke, U. Martens, A. Thomas, J. M. Schmalhorst, G. Reiss, M. Münzenberg, and T. Kuschel, Phys. Rev. B 93, 224433 (2016), arXiv: 1604.07569.

    Article  ADS  Google Scholar 

  26. A. Boehnke, M. Walter, N. Roschewsky, T. Eggebrecht, V. Drewello, K. Rott, M. Münzenberg, A. Thomas, and G. Reiss, Rev. Sci. Instruments 84, 063905 (2013), arXiv: 1303.6553.

    Article  ADS  Google Scholar 

  27. S. Chadov, T. Graf, K. Chadova, X. Dai, F. Casper, G. H. Fecher, and C. Felser, Phys. Rev. Lett. 107, 047202 (2011), arXiv: 1103.5928.

    Article  ADS  Google Scholar 

  28. M. Czerner, and C. Heiliger, J. Appl. Phys. 111, 07C511 (2012).

    Article  Google Scholar 

  29. J. Yan, S. Wang, K. Xia, and Y. Ke, Phys. Rev. B 97, 014404 (2018).

    Article  ADS  Google Scholar 

  30. X. Jia, P. P. Wu, L. W. Zhang, and H. M. Tang, Phys. Rev. B 99, 174413 (2019).

    Article  ADS  Google Scholar 

  31. H. Huang, A. Zheng, G. Gao, and K. Yao, J. Magn. Magn. Mater. 449, 522 (2018).

    Article  ADS  Google Scholar 

  32. M. Gurram, S. Omar, S. Zihlmann, P. Makk, Q. C. Li, Y. F. Zhang, C. Schönenberger, and B. J. van Wees, Phys. Rev. B 97, 045411 (2018), arXiv: 1712.00815.

    Article  ADS  Google Scholar 

  33. L. L. Nian, W. Liu, L. Bai, and X. F. Wang, Phys. Rev. B 99, 195430 (2019).

    Article  ADS  Google Scholar 

  34. Y. Miura, H. Uchida, Y. Oba, K. Abe, and M. Shirai, Phys. Rev. B 78, 064416 (2008).

    Article  ADS  Google Scholar 

  35. G. Kresse, and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  ADS  Google Scholar 

  36. G. Kresse, and J. Hafner, Phys. Rev. B 49, 14251 (1994).

    Article  ADS  Google Scholar 

  37. G. Kresse, and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  38. G. Kresse, and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  39. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).

    Article  ADS  Google Scholar 

  40. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  41. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  42. G. Kresse, and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  43. T. Bredow, and A. R. Gerson, Phys. Rev. B 61, 5194 (2000).

    Article  ADS  Google Scholar 

  44. H. L. Huang, J. C. Tung, and G. Y. Guo, Phys. Rev. B 91, 134409 (2015), arXiv: 1503.00204.

    Article  ADS  Google Scholar 

  45. H. Hsu, P. Blaha, and R. M. Wentzcovitch, Phys. Rev. B 85, 140404 (2012), arXiv: 1203.1861.

    Article  ADS  Google Scholar 

  46. G. K. H. Madsen, and D. J. Singh, Comput. Phys. Commun. 175, 67 (2006), arXiv: cond-mat/0602203.

    Article  ADS  Google Scholar 

  47. B. Geisler, A. Blanca-Romero, and R. Pentcheva, Phys. Rev. B 95, 125301 (2017), arXiv: 1702.03898.

    Article  ADS  Google Scholar 

  48. S. J. Hashemifar, P. Kratzer, and M. Scheffler, Phys. Rev. Lett. 94, 096402 (2005).

    Article  ADS  Google Scholar 

  49. B. Hülsen, M. Scheffler, and P. Kratzer, Phys. Rev. Lett. 103, 046802 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hang Li or Peng-Fei Liu.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 12104458), and Foshan (Southern China) Institute for New Materials (Grant No. 2021AYF25021).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Shi, X., Jin, Y. et al. Tunable magneto-Seebeck effect in Co2FeSi/MgO/Co2FeSi heterostructure via optimized interfacial engineering. Sci. China Phys. Mech. Astron. 67, 237011 (2024). https://doi.org/10.1007/s11433-023-2265-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2265-9

Navigation