Skip to main content
Log in

Hole induced half-metallic 2H VSe2 thin film with high Curie temperature and optical transparency

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In low-dimensional semiconductor systems, carrier doping can effectively tune the electronic band structure, leading to significant impacts on magnetic properties. In this study, we investigate the influence of hole doping on 2H VSe2 films by varying their thickness from bilayer to four-layer configurations. The pristine 2H VSe2 film exhibits layer-to-layer antiferromagnetic (AFM) state, but through hole carrier doping, we successfully switch this state to a ferromagnetic (FM) configuration. Notably, the critical hole carrier doping concentration is found to be thickness-dependent. For instance, in bilayer films, the critical hole doping concentration is approximately 1.25 × 1020/cm3, while in four-layer films, it increases to 6.75 × 1020/cm3. Furthermore, our investigations reveal the emergence of a half-metallic state due to hole doping in all systems. Although the critical temperature exhibits a consistent decrease with increasing layer thickness, remarkably high Curie temperatures are observed. Specifically, we calculate Curie temperatures of 600 K, 570 K, and 550 K for bilayer, trilayer, and four-layer films, respectively. In addition to these magnetic properties, we explore the optical characteristics of 2H VSe2 films. The four-layer film has a large refractive index of 3.2 near the blue light frequency. Moreover, the 2H VSe2 films exhibit optically transparent features in the visible frequency range. These results may indicate that the 2H VSe2 system can be utilized for potential optoelectronic devices based on magnetic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. Liu, M. Liu, X. Liu, X. Wang, H. Deng, M. Lei, Z. Wei, Z. Wei, Recent advances of 2D materials in nonlinear photonics and fiber lasers. Adv. Optical Mater. 8, 1901631 (2020). https://doi.org/10.1002/adom.201901631

    Article  CAS  Google Scholar 

  2. J. Cheng, C. Wang, X. Zou, L. Liao, Recent advances in optoelectronic devices based on 2D materials and their heterostructures. Adv. Opt. Mater. 7, 1800441 (2019). https://doi.org/10.1002/adom.201800441

    Article  CAS  Google Scholar 

  3. Q. Wang, E.T.F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, N.I. Zheludev, Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photon. 10, 60–65 (2016). https://doi.org/10.1038/nphoton.2015.247

    Article  CAS  ADS  Google Scholar 

  4. D. Akinwande, C. Huyghebaert, C.-H. Wang, M.I. Serna, S. Goossens, L.-J. Li, H.-S.P. Wong, F.H.L. Koppens, Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019). https://doi.org/10.1038/s41586-019-1573-9

    Article  CAS  PubMed  ADS  Google Scholar 

  5. J.-U. Lee, S. Lee, J.H. Ryoo, S. Kang, T.Y. Kim, P. Kim, C.-H. Park, J.-G. Park, H. Cheong, Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. Lett. 16, 7433–7438 (2016). https://doi.org/10.1021/acs.nanolett.6b03052

    Article  CAS  ADS  Google Scholar 

  6. X. Wang, K. Du, Y.Y. Fredrik Liu, P. Hu, J. Zhang, Q. Zhang, M.H.S. Owen, X. Lu, C.K. Gan, P. Sengupta, C. Kloc, Q. Xiong, Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3) crystals. 2D Mater. 3, 031009 (2016). https://doi.org/10.1088/2053-1583/3/3/031009

    Article  CAS  Google Scholar 

  7. C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z.Q. Qiu, R.J. Cava, S.G. Louie, J. Xia, X. Zhang, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017). https://doi.org/10.1038/nature22060

    Article  CAS  PubMed  ADS  Google Scholar 

  8. B. Huang, G. Clark, E. Navarro-Moratalla, D.R. Klein, R. Cheng, K.L. Seyler, D. Zhong, E. Schmidgall, M.A. McGuire, D.H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, X. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017). https://doi.org/10.1038/nature22391

    Article  CAS  PubMed  ADS  Google Scholar 

  9. R. Roemer, C. Liu, K. Zou, Robust ferromagnetism in wafer-scale monolayer and multilayer Fe3GeTe2. NPJ 2D Mater. Appl. 4, 33 (2020). https://doi.org/10.1038/s41699-020-00167-z

    Article  CAS  Google Scholar 

  10. X. Zhang, Q. Lu, W. Liu, W. Niu, J. Sun, J. Cook, M. Vaninger, P.F. Miceli, D.J. Singh, S.-W. Lian, T.-R. Chang, X. He, J. Du, L. He, R. Zhang, G. Bian, Y. Xu, Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films. Nat. Commun. 12, 2492 (2021). https://doi.org/10.1038/s41467-021-22777-x

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. W. Yu, J. Li, T.S. Herng, Z. Wang, X. Zhao, X. Chi, W. Fu, I. Abdelwahab, J. Zhou, J. Dan, Z. Chen, Z. Chen, Z. Li, J. Lu, S.J. Pennycook, Y.P. Feng, J. Ding, K.P. Loh, Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. Adv. Mater. 31, 1903779 (2019). https://doi.org/10.1002/adma.201903779

    Article  CAS  Google Scholar 

  12. H. Yang, S.O. Valenzuela, M. Chshiev, S. Couet, B. Dieny, B. Dlubak, A. Fert, K. Garello, M. Jamet, D.-E. Jeong, K. Lee, T. Lee, M.-B. Martin, G.S. Kar, P. Sénéor, H.-J. Shin, S. Roche, Two-dimensional materials prospects for non-volatile spintronic memories. Nature 606, 663–673 (2022). https://doi.org/10.1038/s41586-022-04768-0

    Article  CAS  PubMed  ADS  Google Scholar 

  13. F. Xue, C. Zhang, Y. Ma, Y. Wen, X. He, B. Yu, X. Zhang, Integrated memory devices based on two-dimensional materials. Adv. Mater. (2022). https://doi.org/10.1002/adma.202201880

    Article  PubMed  PubMed Central  Google Scholar 

  14. S. Yu, K. Eshun, H. Zhu, Q. Li, Novel two-dimensional mechano-electric generators and sensors based on transition metal dichalcogenides. Sci. Rep. 5, 12854 (2015). https://doi.org/10.1038/srep12854

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. S.A. Han, J. Lee, J. Lin, S.-W. Kim, J.H. Kim, Piezo/triboelectric nanogenerators based on 2-dimensional layered structure materials. Nano Energy 57, 680–691 (2019). https://doi.org/10.1016/j.nanoen.2018.12.081

    Article  CAS  Google Scholar 

  16. X. Wang, D. Li, Z. Li, C. Wu, C.-M. Che, G. Chen, X. Cui, Ferromagnetism in 2D vanadium diselenide. ACS Nano 15, 16236–16241 (2021). https://doi.org/10.1021/acsnano.1c05232

    Article  CAS  PubMed  Google Scholar 

  17. A.H.M.A. Wasey, S. Chakrabarty, G.P. Das, Quantum size effects in layered VX 2 (X = S, Se) materials: manifestation of metal to semimetal or semiconductor transition. J. Appl. Phys. 117, 064313 (2015). https://doi.org/10.1063/1.4908114

    Article  CAS  ADS  Google Scholar 

  18. M. Esters, R.G. Hennig, D.C. Johnson, Dynamic instabilities in strongly correlated VSe2 monolayers and bilayers. Phys. Rev. B 96, 235147 (2017). https://doi.org/10.1103/PhysRevB.96.235147

    Article  ADS  Google Scholar 

  19. A. Li, W. Zhou, J. Pan, Q. Xia, M. Long, F. Ouyang, Coupling stacking orders with interlayer magnetism in bilayer H-VSe2 *. Chinese Phys. Lett. 37, 107101 (2020). https://doi.org/10.1088/0256-307X/37/10/107101

    Article  CAS  ADS  Google Scholar 

  20. G.S. Ahmad, B. Marfoua, J. Hong, Odd-even alternating exchange coupling and optical properties of 2D 2H–VSe2 film. Physica E E (2022). https://doi.org/10.1016/j.physe.2022.115583

    Article  Google Scholar 

  21. D. Wijethunge, L. Zhang, C. Tang, S. Sanvito, A. Du, Interfacing 2D VS2 with Janus MoSSe: antiferromagnetic electric polarization and charge transfer driven Half-metallicity. Appl. Surf. Sci. 570, 151129 (2021). https://doi.org/10.1016/j.apsusc.2021.151129

    Article  CAS  Google Scholar 

  22. S.-J. Gong, C. Gong, Y.-Y. Sun, W.-Y. Tong, C.-G. Duan, J.-H. Chu, X. Zhang, Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors. Proc. Natl. Acad. Sci. U.S.A. 115, 8511–8516 (2018). https://doi.org/10.1073/pnas.1715465115

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  23. G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci.. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  24. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  MathSciNet  ADS  Google Scholar 

  25. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953

    Article  ADS  Google Scholar 

  26. J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003). https://doi.org/10.1063/1.1564060.Fe3GeTe2

    Article  CAS  ADS  Google Scholar 

  27. J. Heyd, G.E. Scuseria, M. Ernzerhof, Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys.Chem Phys. 124, 219906 (2006). https://doi.org/10.1063/1.2204597

    Article  CAS  ADS  Google Scholar 

  28. R.F.L. Evans, W.J. Fan, P. Chureemart, T.A. Ostler, M.O.A. Ellis, R.W. Chantrell, Atomistic spin model simulations of magnetic nanomaterials. J. Phys. Condens. MatterCondens. Matter. 26, 103202 (2014). https://doi.org/10.1088/0953-8984/26/10/103202

    Article  CAS  ADS  Google Scholar 

  29. R. Evans, VAMPIRE software package version 4.0, York, UK. URL https://vampire.york.ac.uk/. (2016).

Download references

Acknowledgements

This work was supported by a research grant from Pukyong National University (2023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jisang Hong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1856 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, G.S., Hong, J. Hole induced half-metallic 2H VSe2 thin film with high Curie temperature and optical transparency. J. Korean Phys. Soc. 84, 462–469 (2024). https://doi.org/10.1007/s40042-024-01010-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-024-01010-0

Keywords

Navigation