Journal of Polymers and the Environment

, Volume 26, Issue 5, pp 2061–2071 | Cite as

Smart Hydrogel of Carboxymethyl Cellulose Grafted Carboxymethyl Polyvinyl Alcohol and Properties Studied for Future Material Applications

  • Nuraina Anisa Dahlan
  • Janarthanan Pushpamalar
  • Anand Kumar Veeramachineni
  • Saravanan Muniyandy
Original Paper

Abstract

A novel grafted copolymer was synthesized from carboxymethyl cellulose (CMC) and carboxymethyl polyvinyl alcohol (CMPVA) using adipic dihydrazide as the crosslinker. The optimized grafted CMC-g-CMPVA with formulation 3% CMC and 1% CMPVA is sensitive to different pH conditions and exhibited a high swelling capacity. The swelling percentages were 360, 1440 and 2277% at pH 1, 7 and 11, respectively and could retain the shape of the hydrogel that assists easy handling. This smart copolymer forms a hydrogel that is pH responsive that could be utilized in the specific pH environment such as in waste water management, agricultural industry, and drug delivery system. The grafted CMC-g-CMPVA was found to be biocompatible with the living cells and has excellent survival rate at lower polymer concentration and, therefore, this grafted copolymer can be employed in biomedical applications such as drug delivery system and scaffolds in the tissue engineering.

Keywords

Carboxymethyl cellulose Carboxymethyl polyvinyl alcohol Grafted copolymer Biocompatible 

Notes

Acknowledgements

Thanks to Dr. Peters Nichols for running the sample for the solid-state NMR at Monash University Australia. Our valuable gratitude to Dr. Alan Yiu Wah Lee from School of Pharmacy, Monash University Malaysia for providing the brain cells. The study is funded by School of Science, Monash University Malaysia as Honours studentship fund.

References

  1. 1.
    El Sayed A (2014) Nucl Instrum Methods B, 321:41–48CrossRefGoogle Scholar
  2. 2.
    Singh B, Pal L (2011) Int J Biol Macromol 48:501–510CrossRefGoogle Scholar
  3. 3.
    Yang S, Fu S, Liu H, Zhou Y, Li X (2011) J Appl Polym Sci 119:1204–1210CrossRefGoogle Scholar
  4. 4.
    Vieira RS, Guibal E, Silva EA, Beppu MM (2007) Adsorption 13:603–611CrossRefGoogle Scholar
  5. 5.
    Dahlan NA, Ng SL, Pushpamalar J (2017) J Appl Polym Sci 134:44271Google Scholar
  6. 6.
    Shankar P, Gomathi T, Vijayalakshmi K, Sudha PN (2014) Int J Biol Macromol 67:180–188CrossRefGoogle Scholar
  7. 7.
    Badwaik HR, Sakure K, Alexander A, Ajazuddin H, Dhongade DK, Tripathi (2016) Int J Biol Macromol 85:361–369CrossRefGoogle Scholar
  8. 8.
    Biswal DR, Singh RP (2004) Carbohydr Polym 57:379–387CrossRefGoogle Scholar
  9. 9.
    Pushpamalar V, Langford SJ, Ahmad M, Lim YY (2006) Carbohydr Polym 64:312–318CrossRefGoogle Scholar
  10. 10.
    El-Sayed S, Mahmoud K, Fatah A, Hassen A (2011) Physica B 406:4068–4076CrossRefGoogle Scholar
  11. 11.
    Islam MR, Beg MD, Gupta A (2013) Bioresources 8:3753–3770CrossRefGoogle Scholar
  12. 12.
    Zhang L, Zhang G, Lu J, Liang H (2013) Polym Plast Technol Eng 52:163–167CrossRefGoogle Scholar
  13. 13.
    Agarwal S, Sadegh H, Monajjemi M, Hamdy AS, Ali GAM, Memar AOH, Shahryari-Ghoshekandi R, Tyagi I, Gupta VK (2016) J Mol Liq 218:191–197CrossRefGoogle Scholar
  14. 14.
    El-Salmawi KM, Zaid MMA, Ibraheim SM, El-Naggar AM, Zahran AH (2001) J Appl Polym Sci 82:136–142CrossRefGoogle Scholar
  15. 15.
    Qin Y, Hu H, Luo A, Wang Y, Huang X, Song P (2006) J Appl Polym Sci 99:3110–3115CrossRefGoogle Scholar
  16. 16.
    Yu C, Li B (2008) Polym Compos 29:998–1005CrossRefGoogle Scholar
  17. 17.
    Bao Y, Ma J, Li N (2011) Carbohydr Polym 84:76–82CrossRefGoogle Scholar
  18. 18.
    Liang R, Yuan H, Xi G, Zhou Q (2009) Carbohydr Polym 77:181–187CrossRefGoogle Scholar
  19. 19.
    Bocourt M, Bada N, Acosta N, Bucio E, Peniche C (2014) Polym Int 63:1715–1723CrossRefGoogle Scholar
  20. 20.
    Pushpamalar V, Langford SJ, Ahmad M, Hashim K, Lim YY (2013) J Appl Polym Sci 128:1828–1833CrossRefGoogle Scholar
  21. 21.
    Yang Z, Yuan B, Huang X, Zhou J, Cai J, Yang H, Li A, Cheng R (2012) Water Res 46:107–114CrossRefGoogle Scholar
  22. 22.
    Liu L, Liu D, Wang M, Du G, Chen J (2007) Eur Polym J 43:2672–2681CrossRefGoogle Scholar
  23. 23.
    Bubb WA (2003) Concepts Magn Reson A 19:1–19CrossRefGoogle Scholar
  24. 24.
    Bugada DC, Rudin A (1984) Polymer 25:1759–1766CrossRefGoogle Scholar
  25. 25.
    Kaith B, Kalia S (2007) Int J Polym Anal Charact 12:401–412CrossRefGoogle Scholar
  26. 26.
    Gupta B, Büchi FN, Scherer GG, Chapiro A (1994) Polym Adv Technol 5:493–498CrossRefGoogle Scholar
  27. 27.
    Kaur I, Ray P (2008) Broader spectrum: examples, polymer grafting and crosslinking. Wiley, New YorkGoogle Scholar
  28. 28.
    Anjali T (2012) Carbohydr Polym 87:457–460CrossRefGoogle Scholar
  29. 29.
    Li W, Sun B, Wu P (2009) Carbohydr Polym 78:454–461CrossRefGoogle Scholar
  30. 30.
    Łojewska J, Miśkowiec P, Łojewski T, Proniewicz L (2005) Polym Degrad Stab 88:512–520CrossRefGoogle Scholar
  31. 31.
    Birla R (2014) Introduction to tissue engineering: applications and challenges. Wiley, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of ScienceMonash University MalaysiaBandar SunwayMalaysia
  2. 2.School of PharmacyMonash University MalaysiaBandar SunwayMalaysia

Personalised recommendations