Particle-without-Particle: A Practical Pseudospectral Collocation Method for Linear Partial Differential Equations with Distributional Sources
Abstract
Partial differential equations with distributional sources—in particular, involving (derivatives of) delta distributions—have become increasingly ubiquitous in numerous areas of physics and applied mathematics. It is often of considerable interest to obtain numerical solutions for such equations, but any singular (“particle”-like) source modeling invariably introduces nontrivial computational obstacles. A common method to circumvent these is through some form of delta function approximation procedure on the computational grid; however, this often carries significant limitations on the efficiency of the numerical convergence rates, or sometimes even the resolvability of the problem at all. In this paper, we present an alternative technique for tackling such equations which avoids the singular behavior entirely: the “Particle-without-Particle” method. Previously introduced in the context of the self-force problem in gravitational physics, the idea is to discretize the computational domain into two (or more) disjoint pseudospectral (Chebyshev–Lobatto) grids such that the “particle” is always at the interface between them; thus, one only needs to solve homogeneous equations in each domain, with the source effectively replaced by jump (boundary) conditions thereon. We prove here that this method yields solutions to any linear PDE the source of which is any linear combination of delta distributions and derivatives thereof supported on a one-dimensional subspace of the problem domain. We then implement it to numerically solve a variety of relevant PDEs: hyperbolic (with applications to neuroscience and acoustics), parabolic (with applications to finance), and elliptic. We generically obtain improved convergence rates relative to typical past implementations relying on delta function approximations.
Keywords
Pseudospectral methods Distributionally-sourced PDEs Gravitational self-force Neural populations Price formationNotes
Acknowledgements
Due by MO to the Natural Sciences and Engineering Research Council of Canada, by MO and ADAMS to LISA France-CNES, and by MO and CFS to the Ministry of Economy and Competitivity of Spain, MINECO, Contracts ESP2013-47637-P, ESP2015-67234-P and ESP2017-90084-P.
References
- 1.Schwartz, L.: Théorie des Distributions. Hermann, Paris (1957)zbMATHGoogle Scholar
- 2.Schwartz, L.: Sur l’impossibilité de la Multiplication des Distributions. C. R. Acad. Sci. Paris, 29, 847 (1954). http://sites.mathdoc.fr/OCLS/pdf/OCLS_1954__21__1_0.pdf
- 3.Li, C.K.: A review on the products of distributions. In: Taş, K., Tenreiro Machado, J.A., Baleanu, D. (eds.) Mathematical Methods in Engineering, pp. 71–96. Springer, Dordrecht (2007). https://link.springer.com/chapter/10.1007/978-1-4020-5678-9_5
- 4.Colombeau, J.F.: Nonlinear generalized functions: their origin, some developments and recent advances. São Paulo J. Math. Sci. 7, 201 (2013). arXiv:1401.4755 MathSciNetzbMATHGoogle Scholar
- 5.Bottazzi, E.: Grid functions of nonstandard analysis in the theory of distributions and in partial differential equations, arXiv:1704.00470 [math] (2017)
- 6.Geroch, R., Traschen, J.: Strings and other distributional sources in general relativity. Phys. Rev. D 36, 1017 (1987). https://doi.org/10.1103/PhysRevD.36.1017 MathSciNetCrossRefGoogle Scholar
- 7.Mino, Y., Sasaki, M., Tanaka, T.: Gravitational radiation reaction to a particle motion. Phys. Rev. D 55, 3457 (1997). https://doi.org/10.1103/PhysRevD.55.3457 CrossRefGoogle Scholar
- 8.Quinn, T.C., Wald, R.M.: Axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved spacetime. Phys. Rev. D 56, 3381 (1997). https://doi.org/10.1103/PhysRevD.56.3381 MathSciNetCrossRefGoogle Scholar
- 9.Detweiler, S., Whiting, B.F.: Self-force via a Green’s function decomposition. Phys. Rev. D 67, 024025 (2003). https://doi.org/10.1103/PhysRevD.67.024025 CrossRefGoogle Scholar
- 10.Gralla, S.E., Wald, R.M.: A rigorous derivation of gravitational self-force. Class. Quantum Gravity 25, 205009 (2008). http://stacks.iop.org/0264-9381/25/i=20/a=205009
- 11.Gralla, S.E., Wald, R.M.: A note on the coordinate freedom in describing the motion of particles in general relativity. Class. Quantum Gravity 28, 177001 (2011). http://stacks.iop.org/0264-9381/28/i=17/a=177001
- 12.Poisson, E., Pound, A., Vega, I.: The motion of point particles in curved spacetime. Living Rev. Relativ. 14, 7 (2011). http://relativity.livingreviews.org/Articles/lrr-2011-7/
- 13.Blanchet, L., Spallicci, A., Whiting, B. (eds.): Mass and Motion in General Relativity. No. 162 in Fundamental Theories of Physics Springer, Dordrecht, (2011). http://www.springer.com/gp/book/9789048130146
- 14.Spallicci, A.D.A.M., Ritter, P., Aoudia, S.: Self-force driven motion in curved spacetime. Int. J. Geom. Methods Mod. Phys. 11, 1450072 (2014). https://doi.org/10.1142/S0219887814500728 MathSciNetCrossRefzbMATHGoogle Scholar
- 15.Pound, A.: In: Puetzfeld, D., Lämmerzahl, C., Schutz, B. (eds), Equations of Motion in Relativistic Gravity, no. 179 in Fundamental Theories of Physics, pp. 399–486. Springer, Cham, (2015). https://doi.org/10.1007/978-3-319-18335-0_13
- 16.Wardell, B.: In: Puetzfeld, D., Lämmerzahl, C., Schutz, B. (eds), Equations of Motion in Relativistic Gravity, no. 179 in Fundamental Theories of Physics, pp. 487–522. Springer, Cham, (2015). https://link.springer.com/chapter/10.1007/978-3-319-18335-0_14
- 17.Dirac, P.A.M.: Classical theory of radiating electrons. Proc. R. Soc. A Math. Phys. Eng. Sci. 167, 148 (1938). http://rspa.royalsocietypublishing.org/content/167/929/148
- 18.DeWitt, B.S., Brehme, R.W.: Radiation damping in a gravitational field. Ann. Phys. 9, 220 (1960). http://www.sciencedirect.com/science/article/pii/0003491660900300
- 19.Barut, A.O.: Electrodynamics and Classical Theory of Fields and Particles. Dover Publications, New York (1980)Google Scholar
- 20.Amaro-Seoane, P., et al.: The gravitational universe (2013). arXiv:1305.5720 [astro-ph.CO]
- 21.Amaro-Seoane, P., et al.: Laser interferometer space antenna, (2017). arXiv:1702.00786 [astro-ph]
- 22.Haskell, E., Nykamp, D.Q., Tranchina, D.: Population density methods for large-scale modelling of neuronal networks with realistic synaptic kinetics: cutting the dimension down to size. Netw. Comput. Neural Syst. 12, 141 (2001). http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=92F61208FEAF49749FF4D689FB16AE83?doi=10.1.1.333.3553&rep=rep1&type=pdf
- 23.Casti, A.R.R., Omurtag, A., Sornborger, A., Kaplan, E., Knight, B., Victor, J., Sirovich, L.: A population study of integrate-and-fire-or-burst neurons. Neural Comput. 14, 957 (2002). https://doi.org/10.1162/089976602753633349 CrossRefzbMATHGoogle Scholar
- 24.Cáceres, M.J., Carrillo, J.A., Perthame, B.: Analysis of nonlinear noisy integrate & fire neuron models: blow-up and steady states. J. Math. Neurosci. 1, 7 (2011). https://doi.org/10.1186/2190-8567-1-7 MathSciNetCrossRefzbMATHGoogle Scholar
- 25.Cáceres, M.J., Schneider, R.: Blow-up, steady states and long time behaviour of excitatory-inhibitory nonlinear neuron models. Kinet. Relat. Mod. 10, 587 (2016). http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=13531
- 26.Lasry, J.M., Lions, P.L.: Mean field games. Jpn. J. Math. 2, 229 (2007). https://doi.org/10.1007/s11537-007-0657-8 MathSciNetCrossRefzbMATHGoogle Scholar
- 27.Markowich, P.A., Matevosyan, N., Pietschmann, J.F., Wolfram, M.T.: On a parabolic free boundary equation modeling price formation. Math. Models Methods Appl. Sci. 19, 1929 (2009). https://doi.org/10.1142/S0218202509003978 MathSciNetCrossRefzbMATHGoogle Scholar
- 28.Caffarelli, L.A., Markowich, P.A., Pietschmann, J.F.: On a price formation free boundary model by Lasry & Lions. C. R. Acad. Sci. Paris, Ser. I 349, 621 (2011). http://www.sciencedirect.com/science/article/pii/S1631073X11001488
- 29.Burger, M., Caffarelli, L., Markowich, P.A., Wolfram, M.T.: On a Boltzmann-type price formation model. Proc. R. Soc. A 469, 20130126 (2013). http://rspa.royalsocietypublishing.org/content/469/2157/20130126
- 30.Achdou, Y., Buera, F.J., Lasry, J.M., Lions, P.L., Moll, B.: Partial differential equation models in macroeconomics. Phil. Trans. R. Soc. A 372, 20130397 (2014). http://rsta.royalsocietypublishing.org/content/372/2028/20130397
- 31.Pietschmann, J.F.: On some partial differential equation models in socio-economic contexts—analysis and numerical simulations. Doctorate thesis. University of Cambridge (2012). https://www.repository.cam.ac.uk/handle/1810/241495
- 32.Petersson, N.A., Sjogreen, B.: Stable grid refinement and singular source discretization for seismic wave simulations. Commun. Comput. Phys. 8, 1074 (2010). http://www.global-sci.com/issue/abstract/readabs.php?vol=8&page=1074&issue=5&ppage=1110&year=2010
- 33.Kaltenbacher, M. (ed.): Computational Acoustics. Springer, New York (2017). http://www.springer.com/gp/book/9783319590370
- 34.Romanowicz, B., Dziewonski, A. (eds.): Seismology and Structure of the Earth. Treatise on Geophysics, Elsevier (2007)Google Scholar
- 35.Aki, K., Richards, P.G.: Quantitative Seismology, 2nd edn. University Science Books, Sausalito (2009)Google Scholar
- 36.Shearer, P.M.: Introduction to Seismology, 2nd edn. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
- 37.Madariaga, R.: Earthquake seismology. In: Kanamori, H. (ed.) Treatise on Geophysics, pp. 59–82. Elsevier, Amsterdam (2007)CrossRefGoogle Scholar
- 38.Tornberg, A.K., Engquist, B.: Numerical approximations of singular source terms in differential equations. J. Comput. Phys. 200, 462 (2004). http://www.sciencedirect.com/science/article/pii/S0021999104001767
- 39.Cañizares, P.: Extreme-Mass-Ratio Inspirals. Doctorate thesis, Universitat Autònoma de Barcelona (2011). https://gwic.ligo.org/thesisprize/2011/canizares_thesis.pdf
- 40.Cañizares, P., Sopuerta, C.F.: Efficient pseudospectral method for the computation of the self-force on a charged particle: circular geodesics around a Schwarzschild black hole. Phys. Rev. D 79, 084020 (2009). https://doi.org/10.1103/PhysRevD.79.084020 CrossRefGoogle Scholar
- 41.Cañizares, P., Sopuerta, C.F., Jaramillo, J.L.: Pseudospectral collocation methods for the computation of the self-force on a charged particle: generic orbits around a Schwarzschild black hole. Phys. Rev. D 82, 044023 (2010). https://doi.org/10.1103/PhysRevD.82.044023 CrossRefGoogle Scholar
- 42.Cañizares, P., Sopuerta, C.F.: Time-domain modelling of extreme-mass-ratio inspirals for the laser interferometer space antenna. J. Phys. Conf. Ser. 314, 012075 (2011). http://stacks.iop.org/1742-6596/314/i=1/a=012075
- 43.Cañizares, P., Sopuerta, C.F.: Tuning time-domain pseudospectral computations of the self-force on a charged scalar particle. Class. Quantum Gravity 28, 134011 (2011). http://stacks.iop.org/0264-9381/28/i=13/a=134011
- 44.Jaramillo, J.L., Sopuerta, C.F., Cañizares, P.: Are time-domain self-force calculations contaminated by Jost solutions? Phys. Rev. D 83, 061503 (2011). https://doi.org/10.1103/PhysRevD.83.061503 CrossRefGoogle Scholar
- 45.Cañizares, P., Sopuerta, C.F.: Overcoming the gauge problem for the gravitational self-force (2014). arXiv:1406.7154 [gr-qc]
- 46.Oltean, M., Sopuerta, C.F., Spallicci, A.D.A.M.: A frequency-domain implementation of the particle-without-particle approach to EMRIs. J. Phys.: Conf. Ser. 840, 012056 (2017). http://stacks.iop.org/1742-6596/840/i=1/a=012056
- 47.Aoudia, S., Spallicci, A.D.A.M.: Source-free integration method for black hole perturbations and self-force computation: radial fall. Phys. Rev. D 83, 064029 (2011). https://doi.org/10.1103/PhysRevD.83.064029 CrossRefGoogle Scholar
- 48.Ritter, P., Spallicci, A.D.A.M., Aoudia, S., Cordier, S.: A fourth-order indirect integration method for black hole perturbations: even modes. Class. Quantum Gravity 28, 134012 (2011). http://stacks.iop.org/0264-9381/28/i=13/a=134012
- 49.Spallicci, A.D.A.M., Ritter, P., Jubertie, S., Cordier, S., Aoudia, S.: Towards a self-consistent orbital evolution for EMRIs. Astron. Soc. Pac. Conf. Ser. 467, 221 (2012). arXiv:1209.1969 Google Scholar
- 50.Spallicci, A.D.A.M., Ritter, P.: A fully relativistic radial fall. Int. J. Geom. Methods Mod. Phys. 11, 1450090 (2014). https://doi.org/10.1142/S021988781450090X MathSciNetCrossRefzbMATHGoogle Scholar
- 51.Ritter, P., Aoudia, S., Spallicci, A.D.A.M., Cordier, S.: Indirect (source-free) integration method. I. Wave-forms from geodesic generic orbits of EMRIs. Int. J. Geom. Methods Mod. Phys. 13, 1650021 (2015). https://doi.org/10.1142/S0219887816500213 MathSciNetCrossRefzbMATHGoogle Scholar
- 52.Ritter, P., Aoudia, S., Spallicci, A.D.A.M., Cordier, S.: Indirect (source-free) integration method. II. Self-force consistent radial fall. Int. J. Geom. Methods Mod. Phys. 13, 1650019 (2015). https://doi.org/10.1142/S0219887816500195 MathSciNetCrossRefzbMATHGoogle Scholar
- 53.Grandclément, P., Novak, J.: Spectral methods for numerical relativity. Living Rev. Relat. 12, 1 (2009). http://relativity.livingreviews.org/Articles/lrr-2009-1/
- 54.Santos-Oliván, D., Sopuerta, C.F.: Pseudo-spectral collocation methods for hyperbolic equations with arbitrary precision: applications to relativistic gravitation (2018). arXiv:1803.00858 [gr-qc, physics:physics]
- 55.Jung, J.H., Don, W.S.: Collocation methods for hyperbolic partial differential equations with singular sources. Adv. Appl. Math. Mech. 1, 769 (2009). http://www.global-sci.org/aamm/readabs.php?vol=1&no=6&doc=769&year=2009&ppage=780
- 56.Jung, J.H.: A note on the spectral collocation approximation of some differential equations with singular source terms. J. Sci. Comput. 39, 49 (2009). https://doi.org/10.1007/s10915-008-9249-x MathSciNetCrossRefzbMATHGoogle Scholar
- 57.Petersson, N.A., O’Reilly, O., Sjögreen, B., Bydlon, S.: Discretizing singular point sources in hyperbolic wave propagation problems. J. Comput. Phys. 321, 532 (2016). http://www.sciencedirect.com/science/article/pii/S0021999116302054
- 58.López-Alemán, R., Khanna, G., Pullin, J.: Perturbative evolution of particle orbits around Kerr black holes: time-domain calculation. Class. Quantum Gravity 20, 3259 (2003). http://stacks.iop.org/0264-9381/20/i=14/a=320
- 59.Wilbraham, H.: On a certain periodic function. Camb Dublin Math J 3, 198 (1848)Google Scholar
- 60.Gibbs, J.W.: Letter to the editor. Nature 59, 606 (1899)CrossRefGoogle Scholar
- 61.Field, S.E., Hesthaven, J.S., Lau, S.R.: Discontinuous Galerkin method for computing gravitational waveforms from extreme mass ratio binaries. Class. Quantum Gravity 26, 165010 (2009). http://stacks.iop.org/0264-9381/26/i=16/a=165010
- 62.Shin, B.C., Jung, J.H.: Spectral collocation and radial basis function methods for one-dimensional interface problems. Appl. Numer. Math. 61, 911 (2011). http://www.sciencedirect.com/science/article/pii/S0168927411000523
- 63.Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998). http://bookstore.ams.org/gsm-19-r/
- 64.Stakgold, I., Holst, M.J.: Green’s Functions and Boundary Value Problems, 3rd edn. Wiley, Hoboken (2011)CrossRefzbMATHGoogle Scholar
- 65.Cortizo, S.F.: On Dirac’s Delta Calculus, (1995). arXiv:funct-an/9510004
- 66.Constantine, G., Savits, T.: A multivariate Faa di Bruno formula with applications. Trans. Am. Math. Soc. 348, 503 (1996). http://www.ams.org/tran/1996-348-02/S0002-9947-96-01501-2/
- 67.Benci, V.: Ultrafunctions and generalized solutions. Adv. Nonlinear Stud. 13, 461 (2013). https://www.degruyter.com/view/j/ans.2013.13.issue-2/ans-2013-0212/ans-2013-0212.xml
- 68.Trefethen, L.N.: Spectral Methods in MATLAB, SIAM: Society for Industrial and Applied Mathematics, Philadelphia, (2001)Google Scholar
- 69.Zhou, J.G., Causon, D.M., Ingram, D.M., Mingham, C.G.: Numerical solutions of the shallow water equations with discontinuous bed topography. Int. J. Numer. Meth. Fluids 38, 769 (2002). https://doi.org/10.1002/fld.243/abstract CrossRefzbMATHGoogle Scholar
- 70.Bernstein, A., Chertock, A., Kurganov, A.: Central-upwind scheme for shallow water equations with discontinuous bottom topography. Bull. Braz. Math. Soc. New Ser. 47, 91 (2016). https://doi.org/10.1007/s00574-016-0124-3 MathSciNetCrossRefzbMATHGoogle Scholar
- 71.Droste, J.: Het zwaartekrachtsveld van een of meer lichamen volgens de theorie van Einstein. Doctorate thesis (Dir. H.A. Lorentz), Rijksuniversiteit Leiden (1916). https://www.lorentz.leidenuniv.nl/history/proefschriften/sources/Droste_1916.pdf
- 72.Droste, J.: Het veld van een enkel centrum in Einstein’s theorie der zwaartekracht, en de beweging van een stoffelijk punt in dat veld. Kon. Ak. Wetensch. Amst. 25, 163 (1916). [Proc. Acad. Sc. Amsterdam 19 (1917) 197]Google Scholar
- 73.Schwarzschild, K.: Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie, Sitzungsber. Preuß. Akad. Wissenschaften Berlin, Phys.-Math. Kl. p. 189 (1916)Google Scholar
- 74.Rothman, T.: Editor’s Note: the field of a single centre in Einstein’s theory of gravitation, and the motion of a particle in that field. Gen. Relativ. Gravit 34, 1541 (2002). https://link.springer.com/content/pdf/10.1023%2FA%3A1020795205829.pdf
- 75.Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover Publications, Mineola (2001)zbMATHGoogle Scholar
- 76.Peyret, R.: Chebyshev method. In: Spectral Methods for Incompressible Viscous Flow, Applied Mathematical Sciences, pp. 39–100. Springer, New York (2002). https://doi.org/10.1007/978-1-4757-6557-1_4