Skip to main content
Log in

Particle-without-Particle: A Practical Pseudospectral Collocation Method for Linear Partial Differential Equations with Distributional Sources

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Partial differential equations with distributional sources—in particular, involving (derivatives of) delta distributions—have become increasingly ubiquitous in numerous areas of physics and applied mathematics. It is often of considerable interest to obtain numerical solutions for such equations, but any singular (“particle”-like) source modeling invariably introduces nontrivial computational obstacles. A common method to circumvent these is through some form of delta function approximation procedure on the computational grid; however, this often carries significant limitations on the efficiency of the numerical convergence rates, or sometimes even the resolvability of the problem at all. In this paper, we present an alternative technique for tackling such equations which avoids the singular behavior entirely: the “Particle-without-Particle” method. Previously introduced in the context of the self-force problem in gravitational physics, the idea is to discretize the computational domain into two (or more) disjoint pseudospectral (Chebyshev–Lobatto) grids such that the “particle” is always at the interface between them; thus, one only needs to solve homogeneous equations in each domain, with the source effectively replaced by jump (boundary) conditions thereon. We prove here that this method yields solutions to any linear PDE the source of which is any linear combination of delta distributions and derivatives thereof supported on a one-dimensional subspace of the problem domain. We then implement it to numerically solve a variety of relevant PDEs: hyperbolic (with applications to neuroscience and acoustics), parabolic (with applications to finance), and elliptic. We generically obtain improved convergence rates relative to typical past implementations relying on delta function approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Here the terms “linear”/“nonlinear” have their standard meaning from the theory of partial differential equations.

  2. The Gibbs phenomenon, originally discovered by Henry Wilbraham [59] and rediscovered by J. Willard Gibbs [60], refers generally to an overshoot in the approximation of a piecewise continuously differentiable function near a jump discontinuity.

  3. Most commonly, this is referred to simply as the “Schwarzschild solution” in general relativity. Yet, it has long gone largely unrecognized that Johannes Droste, then a doctoral student of Lorentz, discovered this solution independently and announced it only four months after Schwarzschild [71,72,73,74], so for the sake of historical fairness, we here use the nomenclature “Schwarzschild-Droste solution” instead.

References

  1. Schwartz, L.: Théorie des Distributions. Hermann, Paris (1957)

    MATH  Google Scholar 

  2. Schwartz, L.: Sur l’impossibilité de la Multiplication des Distributions. C. R. Acad. Sci. Paris, 29, 847 (1954). http://sites.mathdoc.fr/OCLS/pdf/OCLS_1954__21__1_0.pdf

  3. Li, C.K.: A review on the products of distributions. In: Taş, K., Tenreiro Machado, J.A., Baleanu, D. (eds.) Mathematical Methods in Engineering, pp. 71–96. Springer, Dordrecht (2007). https://link.springer.com/chapter/10.1007/978-1-4020-5678-9_5

  4. Colombeau, J.F.: Nonlinear generalized functions: their origin, some developments and recent advances. São Paulo J. Math. Sci. 7, 201 (2013). arXiv:1401.4755

    MathSciNet  MATH  Google Scholar 

  5. Bottazzi, E.: Grid functions of nonstandard analysis in the theory of distributions and in partial differential equations, arXiv:1704.00470 [math] (2017)

  6. Geroch, R., Traschen, J.: Strings and other distributional sources in general relativity. Phys. Rev. D 36, 1017 (1987). https://doi.org/10.1103/PhysRevD.36.1017

    Article  MathSciNet  Google Scholar 

  7. Mino, Y., Sasaki, M., Tanaka, T.: Gravitational radiation reaction to a particle motion. Phys. Rev. D 55, 3457 (1997). https://doi.org/10.1103/PhysRevD.55.3457

    Article  Google Scholar 

  8. Quinn, T.C., Wald, R.M.: Axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved spacetime. Phys. Rev. D 56, 3381 (1997). https://doi.org/10.1103/PhysRevD.56.3381

    Article  MathSciNet  Google Scholar 

  9. Detweiler, S., Whiting, B.F.: Self-force via a Green’s function decomposition. Phys. Rev. D 67, 024025 (2003). https://doi.org/10.1103/PhysRevD.67.024025

    Article  Google Scholar 

  10. Gralla, S.E., Wald, R.M.: A rigorous derivation of gravitational self-force. Class. Quantum Gravity 25, 205009 (2008). http://stacks.iop.org/0264-9381/25/i=20/a=205009

  11. Gralla, S.E., Wald, R.M.: A note on the coordinate freedom in describing the motion of particles in general relativity. Class. Quantum Gravity 28, 177001 (2011). http://stacks.iop.org/0264-9381/28/i=17/a=177001

  12. Poisson, E., Pound, A., Vega, I.: The motion of point particles in curved spacetime. Living Rev. Relativ. 14, 7 (2011). http://relativity.livingreviews.org/Articles/lrr-2011-7/

  13. Blanchet, L., Spallicci, A., Whiting, B. (eds.): Mass and Motion in General Relativity. No. 162 in Fundamental Theories of Physics Springer, Dordrecht, (2011). http://www.springer.com/gp/book/9789048130146

  14. Spallicci, A.D.A.M., Ritter, P., Aoudia, S.: Self-force driven motion in curved spacetime. Int. J. Geom. Methods Mod. Phys. 11, 1450072 (2014). https://doi.org/10.1142/S0219887814500728

    Article  MathSciNet  MATH  Google Scholar 

  15. Pound, A.: In: Puetzfeld, D., Lämmerzahl, C., Schutz, B. (eds), Equations of Motion in Relativistic Gravity, no. 179 in Fundamental Theories of Physics, pp. 399–486. Springer, Cham, (2015). https://doi.org/10.1007/978-3-319-18335-0_13

  16. Wardell, B.: In: Puetzfeld, D., Lämmerzahl, C., Schutz, B. (eds), Equations of Motion in Relativistic Gravity, no. 179 in Fundamental Theories of Physics, pp. 487–522. Springer, Cham, (2015). https://link.springer.com/chapter/10.1007/978-3-319-18335-0_14

  17. Dirac, P.A.M.: Classical theory of radiating electrons. Proc. R. Soc. A Math. Phys. Eng. Sci. 167, 148 (1938). http://rspa.royalsocietypublishing.org/content/167/929/148

  18. DeWitt, B.S., Brehme, R.W.: Radiation damping in a gravitational field. Ann. Phys. 9, 220 (1960). http://www.sciencedirect.com/science/article/pii/0003491660900300

  19. Barut, A.O.: Electrodynamics and Classical Theory of Fields and Particles. Dover Publications, New York (1980)

    Google Scholar 

  20. Amaro-Seoane, P., et al.: The gravitational universe (2013). arXiv:1305.5720 [astro-ph.CO]

  21. Amaro-Seoane, P., et al.: Laser interferometer space antenna, (2017). arXiv:1702.00786 [astro-ph]

  22. Haskell, E., Nykamp, D.Q., Tranchina, D.: Population density methods for large-scale modelling of neuronal networks with realistic synaptic kinetics: cutting the dimension down to size. Netw. Comput. Neural Syst. 12, 141 (2001). http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=92F61208FEAF49749FF4D689FB16AE83?doi=10.1.1.333.3553&rep=rep1&type=pdf

  23. Casti, A.R.R., Omurtag, A., Sornborger, A., Kaplan, E., Knight, B., Victor, J., Sirovich, L.: A population study of integrate-and-fire-or-burst neurons. Neural Comput. 14, 957 (2002). https://doi.org/10.1162/089976602753633349

    Article  MATH  Google Scholar 

  24. Cáceres, M.J., Carrillo, J.A., Perthame, B.: Analysis of nonlinear noisy integrate & fire neuron models: blow-up and steady states. J. Math. Neurosci. 1, 7 (2011). https://doi.org/10.1186/2190-8567-1-7

    Article  MathSciNet  MATH  Google Scholar 

  25. Cáceres, M.J., Schneider, R.: Blow-up, steady states and long time behaviour of excitatory-inhibitory nonlinear neuron models. Kinet. Relat. Mod. 10, 587 (2016). http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=13531

  26. Lasry, J.M., Lions, P.L.: Mean field games. Jpn. J. Math. 2, 229 (2007). https://doi.org/10.1007/s11537-007-0657-8

    Article  MathSciNet  MATH  Google Scholar 

  27. Markowich, P.A., Matevosyan, N., Pietschmann, J.F., Wolfram, M.T.: On a parabolic free boundary equation modeling price formation. Math. Models Methods Appl. Sci. 19, 1929 (2009). https://doi.org/10.1142/S0218202509003978

    Article  MathSciNet  MATH  Google Scholar 

  28. Caffarelli, L.A., Markowich, P.A., Pietschmann, J.F.: On a price formation free boundary model by Lasry & Lions. C. R. Acad. Sci. Paris, Ser. I 349, 621 (2011). http://www.sciencedirect.com/science/article/pii/S1631073X11001488

  29. Burger, M., Caffarelli, L., Markowich, P.A., Wolfram, M.T.: On a Boltzmann-type price formation model. Proc. R. Soc. A 469, 20130126 (2013). http://rspa.royalsocietypublishing.org/content/469/2157/20130126

  30. Achdou, Y., Buera, F.J., Lasry, J.M., Lions, P.L., Moll, B.: Partial differential equation models in macroeconomics. Phil. Trans. R. Soc. A 372, 20130397 (2014). http://rsta.royalsocietypublishing.org/content/372/2028/20130397

  31. Pietschmann, J.F.: On some partial differential equation models in socio-economic contexts—analysis and numerical simulations. Doctorate thesis. University of Cambridge (2012). https://www.repository.cam.ac.uk/handle/1810/241495

  32. Petersson, N.A., Sjogreen, B.: Stable grid refinement and singular source discretization for seismic wave simulations. Commun. Comput. Phys. 8, 1074 (2010). http://www.global-sci.com/issue/abstract/readabs.php?vol=8&page=1074&issue=5&ppage=1110&year=2010

  33. Kaltenbacher, M. (ed.): Computational Acoustics. Springer, New York (2017). http://www.springer.com/gp/book/9783319590370

  34. Romanowicz, B., Dziewonski, A. (eds.): Seismology and Structure of the Earth. Treatise on Geophysics, Elsevier (2007)

  35. Aki, K., Richards, P.G.: Quantitative Seismology, 2nd edn. University Science Books, Sausalito (2009)

    Google Scholar 

  36. Shearer, P.M.: Introduction to Seismology, 2nd edn. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  37. Madariaga, R.: Earthquake seismology. In: Kanamori, H. (ed.) Treatise on Geophysics, pp. 59–82. Elsevier, Amsterdam (2007)

    Chapter  Google Scholar 

  38. Tornberg, A.K., Engquist, B.: Numerical approximations of singular source terms in differential equations. J. Comput. Phys. 200, 462 (2004). http://www.sciencedirect.com/science/article/pii/S0021999104001767

  39. Cañizares, P.: Extreme-Mass-Ratio Inspirals. Doctorate thesis, Universitat Autònoma de Barcelona (2011). https://gwic.ligo.org/thesisprize/2011/canizares_thesis.pdf

  40. Cañizares, P., Sopuerta, C.F.: Efficient pseudospectral method for the computation of the self-force on a charged particle: circular geodesics around a Schwarzschild black hole. Phys. Rev. D 79, 084020 (2009). https://doi.org/10.1103/PhysRevD.79.084020

    Article  Google Scholar 

  41. Cañizares, P., Sopuerta, C.F., Jaramillo, J.L.: Pseudospectral collocation methods for the computation of the self-force on a charged particle: generic orbits around a Schwarzschild black hole. Phys. Rev. D 82, 044023 (2010). https://doi.org/10.1103/PhysRevD.82.044023

    Article  Google Scholar 

  42. Cañizares, P., Sopuerta, C.F.: Time-domain modelling of extreme-mass-ratio inspirals for the laser interferometer space antenna. J. Phys. Conf. Ser. 314, 012075 (2011). http://stacks.iop.org/1742-6596/314/i=1/a=012075

  43. Cañizares, P., Sopuerta, C.F.: Tuning time-domain pseudospectral computations of the self-force on a charged scalar particle. Class. Quantum Gravity 28, 134011 (2011). http://stacks.iop.org/0264-9381/28/i=13/a=134011

  44. Jaramillo, J.L., Sopuerta, C.F., Cañizares, P.: Are time-domain self-force calculations contaminated by Jost solutions? Phys. Rev. D 83, 061503 (2011). https://doi.org/10.1103/PhysRevD.83.061503

    Article  Google Scholar 

  45. Cañizares, P., Sopuerta, C.F.: Overcoming the gauge problem for the gravitational self-force (2014). arXiv:1406.7154 [gr-qc]

  46. Oltean, M., Sopuerta, C.F., Spallicci, A.D.A.M.: A frequency-domain implementation of the particle-without-particle approach to EMRIs. J. Phys.: Conf. Ser. 840, 012056 (2017). http://stacks.iop.org/1742-6596/840/i=1/a=012056

  47. Aoudia, S., Spallicci, A.D.A.M.: Source-free integration method for black hole perturbations and self-force computation: radial fall. Phys. Rev. D 83, 064029 (2011). https://doi.org/10.1103/PhysRevD.83.064029

    Article  Google Scholar 

  48. Ritter, P., Spallicci, A.D.A.M., Aoudia, S., Cordier, S.: A fourth-order indirect integration method for black hole perturbations: even modes. Class. Quantum Gravity 28, 134012 (2011). http://stacks.iop.org/0264-9381/28/i=13/a=134012

  49. Spallicci, A.D.A.M., Ritter, P., Jubertie, S., Cordier, S., Aoudia, S.: Towards a self-consistent orbital evolution for EMRIs. Astron. Soc. Pac. Conf. Ser. 467, 221 (2012). arXiv:1209.1969

    Google Scholar 

  50. Spallicci, A.D.A.M., Ritter, P.: A fully relativistic radial fall. Int. J. Geom. Methods Mod. Phys. 11, 1450090 (2014). https://doi.org/10.1142/S021988781450090X

    Article  MathSciNet  MATH  Google Scholar 

  51. Ritter, P., Aoudia, S., Spallicci, A.D.A.M., Cordier, S.: Indirect (source-free) integration method. I. Wave-forms from geodesic generic orbits of EMRIs. Int. J. Geom. Methods Mod. Phys. 13, 1650021 (2015). https://doi.org/10.1142/S0219887816500213

    Article  MathSciNet  MATH  Google Scholar 

  52. Ritter, P., Aoudia, S., Spallicci, A.D.A.M., Cordier, S.: Indirect (source-free) integration method. II. Self-force consistent radial fall. Int. J. Geom. Methods Mod. Phys. 13, 1650019 (2015). https://doi.org/10.1142/S0219887816500195

    Article  MathSciNet  MATH  Google Scholar 

  53. Grandclément, P., Novak, J.: Spectral methods for numerical relativity. Living Rev. Relat. 12, 1 (2009). http://relativity.livingreviews.org/Articles/lrr-2009-1/

  54. Santos-Oliván, D., Sopuerta, C.F.: Pseudo-spectral collocation methods for hyperbolic equations with arbitrary precision: applications to relativistic gravitation (2018). arXiv:1803.00858 [gr-qc, physics:physics]

  55. Jung, J.H., Don, W.S.: Collocation methods for hyperbolic partial differential equations with singular sources. Adv. Appl. Math. Mech. 1, 769 (2009). http://www.global-sci.org/aamm/readabs.php?vol=1&no=6&doc=769&year=2009&ppage=780

  56. Jung, J.H.: A note on the spectral collocation approximation of some differential equations with singular source terms. J. Sci. Comput. 39, 49 (2009). https://doi.org/10.1007/s10915-008-9249-x

    Article  MathSciNet  MATH  Google Scholar 

  57. Petersson, N.A., O’Reilly, O., Sjögreen, B., Bydlon, S.: Discretizing singular point sources in hyperbolic wave propagation problems. J. Comput. Phys. 321, 532 (2016). http://www.sciencedirect.com/science/article/pii/S0021999116302054

  58. López-Alemán, R., Khanna, G., Pullin, J.: Perturbative evolution of particle orbits around Kerr black holes: time-domain calculation. Class. Quantum Gravity 20, 3259 (2003). http://stacks.iop.org/0264-9381/20/i=14/a=320

  59. Wilbraham, H.: On a certain periodic function. Camb Dublin Math J 3, 198 (1848)

    Google Scholar 

  60. Gibbs, J.W.: Letter to the editor. Nature 59, 606 (1899)

    Article  Google Scholar 

  61. Field, S.E., Hesthaven, J.S., Lau, S.R.: Discontinuous Galerkin method for computing gravitational waveforms from extreme mass ratio binaries. Class. Quantum Gravity 26, 165010 (2009). http://stacks.iop.org/0264-9381/26/i=16/a=165010

  62. Shin, B.C., Jung, J.H.: Spectral collocation and radial basis function methods for one-dimensional interface problems. Appl. Numer. Math. 61, 911 (2011). http://www.sciencedirect.com/science/article/pii/S0168927411000523

  63. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998). http://bookstore.ams.org/gsm-19-r/

  64. Stakgold, I., Holst, M.J.: Green’s Functions and Boundary Value Problems, 3rd edn. Wiley, Hoboken (2011)

    Book  MATH  Google Scholar 

  65. Cortizo, S.F.: On Dirac’s Delta Calculus, (1995). arXiv:funct-an/9510004

  66. Constantine, G., Savits, T.: A multivariate Faa di Bruno formula with applications. Trans. Am. Math. Soc. 348, 503 (1996). http://www.ams.org/tran/1996-348-02/S0002-9947-96-01501-2/

  67. Benci, V.: Ultrafunctions and generalized solutions. Adv. Nonlinear Stud. 13, 461 (2013). https://www.degruyter.com/view/j/ans.2013.13.issue-2/ans-2013-0212/ans-2013-0212.xml

  68. Trefethen, L.N.: Spectral Methods in MATLAB, SIAM: Society for Industrial and Applied Mathematics, Philadelphia, (2001)

  69. Zhou, J.G., Causon, D.M., Ingram, D.M., Mingham, C.G.: Numerical solutions of the shallow water equations with discontinuous bed topography. Int. J. Numer. Meth. Fluids 38, 769 (2002). https://doi.org/10.1002/fld.243/abstract

    Article  MATH  Google Scholar 

  70. Bernstein, A., Chertock, A., Kurganov, A.: Central-upwind scheme for shallow water equations with discontinuous bottom topography. Bull. Braz. Math. Soc. New Ser. 47, 91 (2016). https://doi.org/10.1007/s00574-016-0124-3

    Article  MathSciNet  MATH  Google Scholar 

  71. Droste, J.: Het zwaartekrachtsveld van een of meer lichamen volgens de theorie van Einstein. Doctorate thesis (Dir. H.A. Lorentz), Rijksuniversiteit Leiden (1916). https://www.lorentz.leidenuniv.nl/history/proefschriften/sources/Droste_1916.pdf

  72. Droste, J.: Het veld van een enkel centrum in Einstein’s theorie der zwaartekracht, en de beweging van een stoffelijk punt in dat veld. Kon. Ak. Wetensch. Amst. 25, 163 (1916). [Proc. Acad. Sc. Amsterdam 19 (1917) 197]

  73. Schwarzschild, K.: Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie, Sitzungsber. Preuß. Akad. Wissenschaften Berlin, Phys.-Math. Kl. p. 189 (1916)

  74. Rothman, T.: Editor’s Note: the field of a single centre in Einstein’s theory of gravitation, and the motion of a particle in that field. Gen. Relativ. Gravit 34, 1541 (2002). https://link.springer.com/content/pdf/10.1023%2FA%3A1020795205829.pdf

  75. Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover Publications, Mineola (2001)

    MATH  Google Scholar 

  76. Peyret, R.: Chebyshev method. In: Spectral Methods for Incompressible Viscous Flow, Applied Mathematical Sciences, pp. 39–100. Springer, New York (2002). https://doi.org/10.1007/978-1-4757-6557-1_4

Download references

Acknowledgements

Due by MO to the Natural Sciences and Engineering Research Council of Canada, by MO and ADAMS to LISA France-CNES, and by MO and CFS to the Ministry of Economy and Competitivity of Spain, MINECO, Contracts ESP2013-47637-P, ESP2015-67234-P and ESP2017-90084-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Oltean.

Appendices

Proof of Distributional Identity

The base case (\(n=0\)) reads \(f(x,{\mathbf {y}})\delta (x-x_{p})\equiv f_{p}\delta (x-x_{p})\). It is trivial to see that this holds.

Now assume the identity holds for \(n=k\). Then we must prove that it holds for \(n=k+1\). In other words, we wish to show that:

$$\begin{aligned} \left\langle f\delta _{\left( p\right) }^{\left( k+1\right) },\phi \right\rangle =\left\langle \left( -1\right) ^{n}\sum _{j=0}^{n}\left( -1\right) ^{j}\left( {\begin{array}{c}n\\ j\end{array}}\right) f_{p}^{\left( n-j\right) }\delta _{\left( p\right) }^{\left( j\right) },\phi \right\rangle . \end{aligned}$$
(84)

We begin with the LHS, and compute:

$$\begin{aligned} \left\langle f\delta _{\left( p\right) }^{\left( k+1\right) },\phi \right\rangle&= \int _{{\mathscr {I}}}\mathrm{d}x\,f\left( x,{\mathbf {y}}\right) \delta _{\left( p\right) }^{\left( k+1\right) }\left( x\right) \phi \left( x\right) \end{aligned}$$
(85)
$$\begin{aligned}&= -\int _{{\mathscr {I}}}\mathrm{d}x\,\left( \phi '\left( x\right) f\left( x,{\mathbf {y}}\right) +\phi \left( x\right) f^{'}\left( x,{\mathbf {y}}\right) \right) \delta _{\left( p\right) }^{\left( k\right) }\left( x\right) , \end{aligned}$$
(86)

using integration by parts. Now, inserting the induction hypothesis,

$$\begin{aligned} \left\langle f\delta _{\left( p\right) }^{\left( k+1\right) },\phi \right\rangle&= -\int _{{\mathscr {I}}}\mathrm{d}x\,\bigg \{\phi '\left( x\right) \left( -1\right) ^{k}\sum _{j=0}^{k}\left( -1\right) ^{j}\left( {\begin{array}{c}k\\ j\end{array}}\right) f_{p}^{\left( k-j\right) }\delta _{\left( p\right) }^{\left( j\right) }\left( x\right) \nonumber \\&\quad +\phi \left( x\right) \left( -1\right) ^{k}\sum _{l=0}^{k}\left( -1\right) ^{l}\left( {\begin{array}{c}k\\ l\end{array}}\right) f_{p}^{\left( k+1-l\right) }\delta _{\left( p\right) }^{\left( j\right) }\left( x\right) \bigg \} \end{aligned}$$
(87)
$$\begin{aligned}&= \left( -1\right) ^{k+1}\bigg \{\sum _{j=0}^{k}\left( -1\right) ^{j}\left( {\begin{array}{c}k\\ j\end{array}}\right) f_{p}^{\left( k-j\right) }\int _{{\mathscr {I}}}\mathrm{d}x\,\phi '\left( x\right) \delta _{\left( p\right) }^{\left( j\right) }\left( x\right) \nonumber \\&\quad +\sum _{l=0}^{k}\left( -1\right) ^{l}\left( {\begin{array}{c}k\\ l\end{array}}\right) f_{p}^{\left( k+1-l\right) }\int _{{\mathscr {I}}}\mathrm{d}x\,\phi \left( x\right) \delta _{\left( p\right) }^{\left( l\right) }\left( x\right) \bigg \} \end{aligned}$$
(88)

Observe that, via integration by parts, \(\langle \delta _{\left( p\right) }^{\left( j\right) },\phi \rangle =(-1)^{j}\phi _{p}^{\left( j\right) }\). Hence, the above simplifies to:

$$\begin{aligned} \left\langle f\delta _{\left( p\right) }^{\left( k+1\right) },\phi \right\rangle&= \left( -1\right) ^{k+1}\bigg \{\sum _{j=0}^{k}\left( {\begin{array}{c}k\\ j\end{array}}\right) f_{p}^{\left( k-j\right) }\phi _{p}^{\left( j+1\right) }+\sum _{l=0}^{k}\left( {\begin{array}{c}k\\ l\end{array}}\right) f_{p}^{\left( k+1-l\right) }\phi _{p}^{\left( l\right) }\bigg \} \end{aligned}$$
(89)
$$\begin{aligned}&= \left( -1\right) ^{k+1}\bigg \{\sum _{j=1}^{k+1}\left( {\begin{array}{c}k\\ j-1\end{array}}\right) f_{p}^{\left( k+1-j\right) }\phi _{p}^{\left( j\right) }+\sum _{l=0}^{k}\left( {\begin{array}{c}k\\ l\end{array}}\right) f_{p}^{\left( k+1-l\right) }\phi _{p}^{\left( l\right) }\bigg \} \end{aligned}$$
(90)
$$\begin{aligned}&= \left( -1\right) ^{k+1}\bigg \{ f_{p}^{\left( k+1\right) }\phi _{p}+\sum _{j=1}^{k+1}\left[ \left( {\begin{array}{c}k\\ j-1\end{array}}\right) +\left( {\begin{array}{c}k\\ j\end{array}}\right) \right] f_{p}^{\left( k+1-j\right) }\phi _{p}^{\left( j\right) }+f_{p}\phi _{p}^{\left( k+1\right) }\bigg \} \end{aligned}$$
(91)

after rearranging the sum terms. Using the recursive formula for the binomial coefficient, \(\left( {\begin{array}{c}k\\ j-1\end{array}}\right) +\left( {\begin{array}{c}k\\ j\end{array}}\right) =\left( {\begin{array}{c}k+1\\ j\end{array}}\right) \), and then including the first and last terms in (91) into the sum, we get:

$$\begin{aligned} \left\langle f\delta _{\left( p\right) }^{\left( k+1\right) },\phi \right\rangle =\left( -1\right) ^{k+1}\sum _{j=0}^{k+1}\left( {\begin{array}{c}k+1\\ j\end{array}}\right) f_{p}^{\left( k+1-j\right) }\phi _{p}^{\left( j\right) }. \end{aligned}$$
(92)

Now using \(\phi _{p}^{\left( j\right) }=\langle \delta _{\left( p\right) },\phi ^{\left( j\right) }\rangle =(-1)^{j}\langle \delta _{\left( p\right) }^{\left( j\right) },\phi \rangle \), we finally obtain

$$\begin{aligned} \left\langle f\delta _{\left( p\right) }^{\left( k+1\right) },\phi \right\rangle&= \int _{{\mathscr {I}}}\mathrm{d}x\,\phi \left( x\right) \bigg [\left( -1\right) ^{k+1}\sum _{j=0}^{k+1}\left( -1\right) ^{j}\left( {\begin{array}{c}k+1\\ j\end{array}}\right) f_{p}^{\left( k+1-j\right) }\delta _{\left( p\right) }^{\left( j\right) }\left( x\right) \bigg ] \end{aligned}$$
(93)
$$\begin{aligned}&= \left\langle \left( -1\right) ^{k+1}\sum _{j=0}^{k+1}\left( -1\right) ^{j}\left( {\begin{array}{c}k+1\\ j\end{array}}\right) f_{p}^{\left( k+1-j\right) }\delta _{\left( p\right) }^{\left( j\right) },\phi \right\rangle , \end{aligned}$$
(94)

which is what we wanted to prove.

Pseudospectral Collocation Methods

We use this appendix to describe very cursorily the PSC methods used for the numerical schemes in this paper and to introduce some notation in relation thereto. For good detailed expositions see, for example, Refs. [68, 75, 76].

We work on Chebyshev–Lobatto (CL) computational grids. On any domain \([a,b]={\mathscr {D}}\subseteq {\mathscr {I}}\), these comprise the (non-uniformly spaced) set of N points \(\{X_{i}\}_{i=0}^{N}\subset {\mathscr {D}}\) obtained by projecting onto \({\mathscr {D}}\) those points located at equal angles on a hypothetical semicircle having \({\mathscr {D}}\) as its diameter. That is to say, the CL grid on the “standard” spectral domain \({\mathscr {D}}^{\text {s}}=[-1,1]\) is given by

$$\begin{aligned} X_{i}^{\text {s}}=-\cos \left( \frac{\pi i}{N}\right) \,,\quad \forall 0\le i\le N\,, \end{aligned}$$
(95)

which can straightforwardly be transformed (by shifting and stretching) to the desired grid on \({\mathscr {D}}\). For any function \(f:{\mathscr {D}}\rightarrow {\mathbb {R}}\) we denote via a subscript its value at the i-th CL point, \(f(X_{i})=f_{i}\), and in slanted boldface the vector containing all such values,

$$\begin{aligned} {\varvec{f}}=\left[ \begin{array}{c} f_{0}\\ f_{1}\\ \vdots \\ f_{N} \end{array}\right] \,. \end{aligned}$$
(96)

There exists an \((N+1)\times (N+1)\) matrix \({\mathbb {D}}\), the so-called CL differentiation matrix, such that the derivative values of f can be approximated simply by applying it to (96), i.e. \({\varvec{f}}'={\mathbb {D}}{\varvec{f}}\). For convenience, we also employ the notation \({\mathbb {M}}(r_{\text {i}}:r_{\text {f}},c_{\text {i}}:c_{\text {f}})\) to refer to the part of any matrix \({\mathbb {M}}\) from the \(r_{\text {i}}\)-th to the \(r_{\text {f}}\)-th row and from the \(c_{\text {i}}\)-th to the \(c_{\text {f}}\)-th column. (A simple “ : ” indicates taking all rows/columns.)

Numerical Schemes for Distributionally-Sourced PDEs

1.1 First-Order Hyperbolic PDEs

We apply a first order in time finite difference scheme to the homogeneous PDEs; thus, prior to imposing BCs/JCs, the equations become \(\frac{1}{\Delta t}({\varvec{u}}_{k+1}^{\pm }-{\varvec{u}}_{k}^{\pm })=-{\mathbb {D}}^{\pm }{\varvec{u}}_{k}^{\pm }\), where the vectors \({\varvec{u}}_{k}^{\pm }\) contain the values of the solutions on the CL grids at the k-th time step, \({\mathbb {D}}^{\pm }\) is the CL differentiation matrix on the respective domains, and \(\Delta t\) is our time step. We can rewrite the discretized PDE as \({\varvec{u}}_{k+1}^{\pm }={\varvec{u}}_{k}^{\pm }-\Delta t{\mathbb {D}}^{\pm }{\varvec{u}}_{k}^{\pm }={\varvec{s}}_{k}^{\pm }\). To impose the BC and JC, we modify the equations as follows:

$$\begin{aligned} \left[ \begin{array}{c} {\varvec{u}}_{k+1}^{-}\\ \hline {\varvec{u}}_{k+1}^{+} \end{array}\right] =\left[ \begin{array}{c} u_{N,k}^{+}\\ {\varvec{s}}_{k}^{-}(2:N+1)\\ \hline u_{N,k}^{-}+g_{k}\\ {\varvec{s}}_{k}^{+}(2:N+1) \end{array}\right] . \end{aligned}$$
(97)

Similarly, for our neuroscience application, we discretize the PDE using a first order finite difference scheme: \(\frac{1}{\Delta t}({\varvec{\rho }}_{k+1}^{\pm }-{\varvec{\rho }}_{k}^{\pm })=-{\mathbb {D}}^{\pm }{\varvec{R}}_{k}^{\pm }\) where \(R_{i,k}^{\pm }=(1-V_{i}^{\pm })\rho _{i,k}^{\pm }\). Hence, prior to imposing the BC/JC, we have \({\varvec{\rho }}_{k+1}^{\pm }={\varvec{\rho }}_{k}^{\pm }-\Delta t{\mathbb {D}}^{\pm }{\varvec{R}}_{k}^{\pm }={\varvec{s}}_{k}^{\pm }\). To impose the BC/JC, we just modify the equations accordingly:

$$\begin{aligned} \left[ \begin{array}{c} {\varvec{\rho }}_{k+1}^{-}\\ \hline {\varvec{\rho }}_{k+1}^{+} \end{array}\right] =\left[ \begin{array}{c} 0\\ {\varvec{s}}_{k}^{-}(2:N+1)\\ \hline \rho _{N,k}^{-}+\frac{1-L}{1-V_{*}}\rho _{N,k}^{+}\\ {\varvec{s}}_{k}^{+}(2:N+1) \end{array}\right] . \end{aligned}$$
(98)

1.2 Parabolic PDEs

In these problems, we have moving boundaries for the CL grids (since the location of the singular source is time-dependent). The mapping for transforming the standard (fixed) spectral domain \([-1,1]\) into an arbitrary (time-dependent) one, say \({\mathscr {D}}=[a(t),b(t)]\), is given by

$$\begin{aligned} {\mathscr {V}}\times \left[ 0,1\right] \rightarrow \,&{\mathscr {V}}\times {\mathscr {D}} \end{aligned}$$
(99)
$$\begin{aligned} \left( T,X\right) \mapsto \,&\left( t\left( T\right) ,x\left( T,X\right) \right) \,, \end{aligned}$$
(100)

where

$$\begin{aligned} t\left( T\right)&= T\,, \end{aligned}$$
(101)
$$\begin{aligned} x\left( T,X\right)&= \frac{b-a}{2}X+\frac{a+b}{2}\,. \end{aligned}$$
(102)

For transforming back, we have

$$\begin{aligned} {\mathscr {V}}\times {\mathscr {D}}\rightarrow \,&{\mathscr {V}}\times \left[ 0,1\right] \end{aligned}$$
(103)
$$\begin{aligned} \left( t,x\right) \mapsto \,&\left( T\left( t\right) ,X\left( t,x\right) \right) \,, \end{aligned}$$
(104)

where

$$\begin{aligned} T\left( t\right)&= t\,, \end{aligned}$$
(105)
$$\begin{aligned} X\left( t,x\right)&= \frac{2x-a-b}{b-a}\,. \end{aligned}$$
(106)

Thus, for any function f(tx) in these problems, we must take care to express the time partial using the chain rule as

$$\begin{aligned} \frac{\partial f}{\partial t}&= \frac{\partial f}{\partial T}\frac{\partial T}{\partial t}+\frac{\partial f}{\partial X}\frac{\partial X}{\partial t} \end{aligned}$$
(107)
$$\begin{aligned}&= \frac{\partial f}{\partial T}-\frac{2}{\left( b-a\right) ^{2}}\left[ \left( b-x\right) {\dot{a}}+\left( x-a\right) {\dot{b}}\right] \frac{\partial f}{\partial X}\,, \end{aligned}$$
(108)

where in the second line we have used (105)–(106).

Now, let us use this to formulate the numerical schemes for our problems—first, for the heat equation. Let \({\mathbb {D}}_{k}^{\pm }\) denote the CL differentiation matrices on each of the two domains at the k-th time step. Then, using (108), we have here the following finite difference formula for the homogeneous PDEs prior to imposing BCs/JCs: \(\frac{1}{\Delta t}({\varvec{u}}_{k+1}^{\pm }-{\varvec{u}}_{k}^{\pm })=({\mathbb {D}}_{k}^{\pm })^{2}{\varvec{u}}_{k}^{\pm }-{\mathbb {C}}_{k}^{\pm }{\mathbb {D}}{\varvec{u}}_{k}^{\pm }\), where \({\mathbb {D}}\) is the CL differentiation matrix on \([-1,1]\) and \({\mathbb {C}}_{k}^{-}=\mathrm{diag}([2/(x_{p}(t_{k}))^{2}][(-x_{i}^{-}){\dot{x}}_{p}(t_{k})])\), \({\mathbb {C}}_{k}^{+}=\mathrm{diag}([2/(1-x_{p}(t_{k}))^{2}][(x_{i}^{+}-1){\dot{x}}_{p}(t_{k})])\). Thus \({\varvec{u}}_{k+1}^{\pm }={\varvec{u}}_{k}^{\pm }+\Delta t[({\mathbb {D}}_{k}^{\pm })^{2}-{\mathbb {C}}_{k}^{\pm }{\mathbb {D}}]{\varvec{u}}_{k}^{\pm }={\varvec{s}}_{k}^{\pm }\). We can implement the BCs and JCs, by modifying the first and last equations on each domain:

$$\begin{aligned} \left[ \begin{array}{cccc|cccc} 1 &{} 0 &{} \cdots &{} 0 &{} 0\\ 0 &{} 1 &{} \cdots &{} 0 &{} &{} 0\\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} &{} &{} \ddots \\ 0 &{} 0 &{} \cdots &{} 1 &{} &{} &{} &{} 0\\ \hline 0 &{} &{} &{} &{} &{} &{} {\mathbb {D}}_{k}^{+}(1,:)\\ &{} 0 &{} &{} &{} 0 &{} 1 &{} \cdots &{} 0\\ &{} &{} \ddots &{} &{} \vdots &{} \vdots &{} \ddots &{} \vdots \\ &{} &{} &{} 0 &{} 0 &{} 0 &{} \cdots &{} 1 \end{array}\right] \left[ \begin{array}{c} \\ {\varvec{u}}_{k+1}^{-}\\ \\ \hline \\ {\varvec{u}}_{k+1}^{+}\\ \\ \end{array}\right] =\left[ \begin{array}{c} 0\\ {\varvec{s}}_{k}^{-}(2:N)\\ u_{0,k}^{+}\\ \hline {\mathbb {D}}_{k}^{-}(N,:){\varvec{u}}_{k}^{-}-\lambda \\ {\varvec{s}}_{k}^{+}(2:N)\\ 0 \end{array}\right] . \end{aligned}$$
(109)

Note that we are actually introducing an error by using (for convenience and ease of adaptability) \({\mathbb {D}}_{k}^{+}\) instead of \({\mathbb {D}}_{k+1}^{+}\) on the LHS (in the equation for \(u_{0,k+1}^{+}\)). However, one can easily convince oneself that \({\mathbb {D}}_{k+1}^{+}-{\mathbb {D}}_{k}^{+}={\mathcal {O}}(\Delta t)\), which is already the order of the error of the finite difference scheme, so we are not actually introducing any new error in this way. Furthermore, because we use up the last equation for \({\varvec{u}}_{k}^{-}\) to impose the JC on u (i.e. we do not have an equation for \(u_{N,k}^{-}\)), we must use the derivative at the previous point (i.e., at \(u_{N-1,k}^{-}\)) in order to impose the derivative JC. Hence on the RHS, we use \({\mathbb {D}}_{k}^{-}(N,:)\) instead of \({\mathbb {D}}_{k}^{-}(N+1,:)\).

The scheme for the finance model is analogous. We use again the first-order finite-difference method for the homogeneous equations, \(\frac{1}{\Delta t}({\varvec{f}}_{k+1}^{\sigma }-{\varvec{f}}_{k}^{\sigma })=({\mathbb {D}}_{k}^{\sigma })^{2}{\varvec{f}}_{k}^{\sigma }-{\mathbb {C}}_{k}^{\sigma }{\mathbb {D}}{\varvec{f}}_{k}^{\sigma }\) with the matrices \({\mathbb {C}}_{k}^{\sigma }\) defined similarly to those in the heat equation problem (again using (108)); thus \({\varvec{f}}_{k+1}^{\sigma }={\varvec{f}}_{k}^{\sigma }+\Delta t[({\mathbb {D}}_{k}^{\sigma })^{2}-{\mathbb {C}}_{k}^{\sigma }{\mathbb {D}}]{\varvec{f}}_{k}^{\sigma }={\varvec{s}}_{k}^{\sigma }\). To impose the BCs/JCs, we modify the equations appropriately:

$$\begin{aligned} \left[ \begin{array}{ccccc} &{} &{} {\mathbb {D}}_{k}^{-}(1,:)\\ 0 &{} 1 &{} \cdots &{} 0 &{} 0\\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} 1 &{} 0\\ 0 &{} 0 &{} \cdots &{} 0 &{} 1 \end{array}\right] \left[ \begin{array}{c} \\ \\ {\varvec{f}}_{k+1}^{-}\\ \\ \\ \end{array}\right]&=\left[ \begin{array}{c} 0\\ s_{1,k}^{-}\\ \vdots \\ s_{N,k}^{-}\\ f_{0,k}^{0} \end{array}\right] , \end{aligned}$$
(110)
$$\begin{aligned} \left[ \begin{array}{ccccc} &{} &{} {\mathbb {D}}_{k}^{0}(1,:)\\ 0 &{} 1 &{} \cdots &{} 0 &{} 0\\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} 1 &{} 0\\ 0 &{} 0 &{} \cdots &{} 0 &{} 1 \end{array}\right] \left[ \begin{array}{c} \\ \\ {\varvec{f}}_{k+1}^{0}\\ \\ \\ \end{array}\right]&=\left[ \begin{array}{c} {\mathbb {D}}_{k}^{-}(N,:){\varvec{f}}_{k}^{-}-\lambda _{k}\\ s_{1,k}^{0}\\ \vdots \\ s_{N,k}^{0}\\ f_{0,k}^{+} \end{array}\right] , \end{aligned}$$
(111)
$$\begin{aligned} \left[ \begin{array}{ccccc} &{} &{} {\mathbb {D}}_{k}^{+}(1,:)\\ 0 &{} 1 &{} \cdots &{} 0 &{} 0\\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} 1 &{} 0\\ &{} &{} {\mathbb {D}}_{k}^{+}(N+1,:) \end{array}\right] \left[ \begin{array}{c} \\ \\ {\varvec{f}}_{k+1}^{+}\\ \\ \\ \end{array}\right]&=\left[ \begin{array}{c} {\mathbb {D}}_{k}^{0}(N,:){\varvec{f}}_{k}^{0}+\lambda _{k}\\ s_{1,k}^{+}\\ \vdots \\ s_{N,k}^{+}\\ 0 \end{array}\right] . \end{aligned}$$
(112)

1.3 Second-Order Hyperbolic PDEs

We again apply a first order in time finite difference scheme to the homogeneous PDEs; prior to imposing BCs/JCs, the equations become

$$\begin{aligned} \frac{1}{\Delta t}\left( \left[ \begin{array}{c} {\varvec{u}}_{k+1}^{\pm }\\ {\varvec{v}}_{k+1}^{\pm }\\ {\varvec{w}}_{k+1}^{\pm } \end{array}\right] -\left[ \begin{array}{c} {\varvec{u}}_{k}^{\pm }\\ {\varvec{v}}_{k}^{\pm }\\ {\varvec{w}}_{k}^{\pm } \end{array}\right] \right) ={\mathbb {C}}^{\pm }\left[ \begin{array}{c} {\varvec{u}}_{k}^{\pm }\\ {\varvec{v}}_{k}^{\pm }\\ {\varvec{w}}_{k}^{\pm } \end{array}\right] \,, \end{aligned}$$
(113)

where

$$\begin{aligned} {\mathbb {C}}^{\pm }=\left[ \begin{array}{ccc} 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad {\mathbb {I}}\\ 0 &{}\quad {\mathbb {I}} &{}\quad 0 \end{array}\right] \left[ \begin{array}{ccc} {\mathbb {D}}^{\pm } &{}\quad 0 &{}\quad 0\\ 0 &{}\quad {\mathbb {D}}^{\pm } &{}\quad 0\\ 0 &{}\quad 0 &{}\quad {\mathbb {D}}^{\pm } \end{array}\right] +\left[ \begin{array}{ccc} 0 &{}\quad 0 &{}\quad {\mathbb {I}}\\ 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 \end{array}\right] =\left[ \begin{array}{ccc} 0 &{}\quad 0 &{}\quad {\mathbb {I}}\\ 0 &{}\quad 0 &{}\quad {\mathbb {D}}^{\pm }\\ 0 &{}\quad {\mathbb {D}}^{\pm } &{}\quad 0 \end{array}\right] \,. \end{aligned}$$
(114)

We can rewrite the discretized PDE as

$$\begin{aligned} \left[ \begin{array}{c} {\varvec{u}}_{k+1}^{\pm }\\ {\varvec{v}}_{k+1}^{\pm }\\ {\varvec{w}}_{k+1}^{\pm } \end{array}\right] =\left( \Delta t{\mathbb {C}}^{\pm }+{\mathbb {I}}\right) \left[ \begin{array}{c} {\varvec{u}}_{k}^{\pm }\\ {\varvec{v}}_{k}^{\pm }\\ {\varvec{w}}_{k}^{\pm } \end{array}\right] =\left[ \begin{array}{c} {\varvec{s}}_{k}^{\pm }\\ {\varvec{y}}_{k}^{\pm }\\ {\varvec{z}}_{k}^{\pm } \end{array}\right] \,. \end{aligned}$$
(115)

To impose the BCs and JCs, we modify the equations as follows:

$$\begin{aligned} \left[ \begin{array}{cccc} 1 &{}\quad \cdots &{}\quad 0 &{} 0\\ \vdots &{}\quad \ddots &{}\quad \vdots &{} 0\\ 0 &{}\quad \cdots &{}\quad 1 &{} 0\\ &{} {\mathbb {D}}^{-}(N+1,:) \end{array}\right] \left[ \begin{array}{c} \\ {\varvec{u}}_{k+1}^{-}\\ \\ \end{array}\right]&= \left[ \begin{array}{c} 0\\ {\varvec{s}}_{k}^{-}(2:N)\\ {\mathbb {D}}^{+}(1,:){\varvec{u}}_{k}^{+} \end{array}\right] \,, \end{aligned}$$
(116)
$$\begin{aligned} \left[ \begin{array}{c} \\ {\varvec{u}}_{k+1}^{+}\\ \\ \end{array}\right]&= \left[ \begin{array}{c} u_{N-1,k+1}^{-}-g_{k}\\ {\varvec{s}}_{k}^{+}(2:N)\\ 0 \end{array}\right] \,, \end{aligned}$$
(117)
$$\begin{aligned} \left[ \begin{array}{c} {\varvec{v}}_{k+1}^{-}\\ \hline {\varvec{v}}_{k+1}^{+} \end{array}\right]&= \left[ \begin{array}{c} {\mathbb {D}}^{-}{\varvec{u}}_{k+1}^{-}\\ \hline {\mathbb {D}}^{+}{\varvec{u}}_{k+1}^{+} \end{array}\right] \,, \end{aligned}$$
(118)
$$\begin{aligned} \left[ \begin{array}{c} {\varvec{w}}_{k+1}^{-}\\ \hline {\varvec{w}}_{k+1}^{+} \end{array}\right]&= \left[ \begin{array}{c} 0\\ {\varvec{z}}_{k}^{-}(2:N+1)\\ \hline w_{N,k+1}^{-}-{\dot{g}}_{k+1}\\ {\varvec{z}}_{k}^{+}(2:N)\\ 0 \end{array}\right] . \end{aligned}$$
(119)

1.4 Elliptic PDEs

In this case we have no time evolution, and we simply need to solve \((({\mathbb {D}}^{\pm })^{2}+\mathrm{diag}(1/X_{i}^{\pm }){\mathbb {D}}^{\pm }){\varvec{u}}^{\pm }={\mathbb {M}}^{\pm }{\varvec{u}}^{\pm }=\mathbf{0}\), modified appropriately to account for the BCs and JCs. In particular, we first solve for \({\varvec{u}}^{+}\) using the BCs, and then for \({\varvec{u}}^{-}\) using the solution for \({\varvec{u}}^{+}\) to implement the JCs:

$$\begin{aligned} \left[ \begin{array}{c} {\mathbb {M}}^{+}(1:N-1,:)\\ 00\cdots 01\\ {\mathbb {D}}^{+}(N+1,:) \end{array}\right] {\varvec{u}}^{+}&= \left[ \begin{array}{c} \mathbf{0}(1:N-1)\\ 1-\tfrac{1}{2}\log (2L)\\ -\tfrac{1}{2L} \end{array}\right] \,, \end{aligned}$$
(120)
$$\begin{aligned} \left[ \begin{array}{c} {\mathbb {M}}^{-}(1:N-1,:)\\ 00\cdots 01\\ {\mathbb {D}}^{-}(N+1,:) \end{array}\right] {\varvec{u}}^{-}&= \left[ \begin{array}{c} \mathbf{0}(1:N-1)\\ u_{0}^{+}\\ {\mathbb {D}}^{+}(1,:){\varvec{u}}^{+}+1 \end{array}\right] \,. \end{aligned}$$
(121)

Exact Solution for the Elastic Wave Equation

A useful method for obtaining exact solutions to the problem (79) on \({\mathscr {I}}={\mathbb {R}}\) is outlined in Ref. [32]; we follow the same procedure here, except using a sinusoidal source time function (rather than a polynomial, as is done in Ref. [32]).

We begin by Fourier transforming the PDE in the spatial domain, using

$$\begin{aligned} {\hat{u}}\left( \xi ,t\right) =\int _{{\mathbb {R}}}\mathrm{d}x\,u\left( x,t\right) \mathrm{e}^{-\mathrm{i}\xi x}\,,\quad u\left( x,t\right) =\frac{1}{2\pi }\int _{{\mathbb {R}}}\mathrm{d}\xi \,{\hat{u}}\left( \xi ,t\right) \mathrm{e}^{\mathrm{i}\xi x}\,. \end{aligned}$$
(122)

Thus, multiplying the PDE in (79) by \(\mathrm{e}^{-\mathrm{i}\xi x}\), integrating over \({\mathbb {R}}\) and applying integration by parts with the assumption of vanishing boundary terms, we get the following equation for the Fourier transform of u:

$$\begin{aligned} \ddot{{\hat{u}}}+\xi ^{2}{\hat{u}}=\mathrm{i}\xi g\left( t\right) \mathrm{e}^{-\mathrm{i}\xi x_{*}}\,. \end{aligned}$$
(123)

One can easily check that the exact solution of (123), with initial conditions \({\hat{u}}(\xi ,0)=0=\dot{{\hat{u}}}(\xi ,0)\), is simply

$$\begin{aligned} {\hat{u}}\left( \xi ,t\right) =\frac{1}{2}\mathrm{e}^{-\mathrm{i}\xi x_{*}}\sum _{\sigma =\pm }\sigma \mathrm{e}^{\sigma \mathrm{i}\xi t}\int _{0}^{t}\mathrm{d}\tau \,g\left( \tau \right) \mathrm{e}^{-\sigma \mathrm{i}\xi \tau }\,. \end{aligned}$$
(124)

Inserting \(g(\tau )=\kappa \sin (\omega \tau )\) into (124) and carrying out the integrals, we get

$$\begin{aligned} {\hat{u}}=\frac{\mathrm{i}\kappa \mathrm{e}^{-\mathrm{i}\xi x_{*}}}{\xi ^{2}-\omega ^{2}}\left[ \xi \sin \left( \omega t\right) -\omega \sin \left( \xi t\right) \right] \,. \end{aligned}$$
(125)

Finally, plugging (125) back into (122) and using

$$\begin{aligned} \int _{{\mathbb {R}}}\mathrm{d}\xi \,\frac{\xi \mathrm{e}^{\mathrm{i}\xi \left( x-x_{*}\right) }}{\xi ^{2}-\omega ^{2}}&= \mathrm{i}\pi {\mathrm{sgn}}\left( x-x_{*}\right) \cos \left( \omega \left( x-x_{*}\right) \right) \,, \end{aligned}$$
(126)
$$\begin{aligned} \int _{{\mathbb {R}}}\mathrm{d}\xi \,\frac{\sin \left( \xi t\right) \mathrm{e}^{\mathrm{i}\xi \left( x-x_{*}\right) }}{\xi ^{2}-\omega ^{2}}&= \frac{\mathrm{i}\pi }{2\omega }\sum _{\sigma =\pm }\sigma {\mathrm{sgn}}\left( x-x_{*}+\sigma t\right) \sin \left( \omega \left( x-x_{*}+\sigma t\right) \right) \,, \end{aligned}$$
(127)

we get the solution (80).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oltean, M., Sopuerta, C.F. & Spallicci, A.D.A.M. Particle-without-Particle: A Practical Pseudospectral Collocation Method for Linear Partial Differential Equations with Distributional Sources. J Sci Comput 79, 827–866 (2019). https://doi.org/10.1007/s10915-018-0873-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0873-9

Keywords

Navigation