Advertisement

A review on the products of distributions

  • C. K. Li

Abstract

The problem of defining products of distributions has been open and an active research area since Schwartz introduced the theory of distribution around 1950. The inherent difficulties of obtaining products have never prevented their appearance in literature, as they are needed in quantum field and differential equations with distribution involved. The objective of this paper is to recollect various approaches, which include sequential and complex analysis methods, to tackling products of distributions in one or multiple variables, as well as particular generalized functions defined on certain manifolds.

Keywords

Integral Transform Laurent Series Summable Function Laurent Expansion Elementary Particle Physic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Sch59]
    Schwartz, L.: Théorie des distributions. Vols.I, II, Hermann, Paris (1957)zbMATHGoogle Scholar
  2. [Gasi66]
    Gasiorowicz, S.: Elementary particle physics. J. Wiley and Sons Inc., New York (1966)Google Scholar
  3. [AMS73]
    Antosik, P., Mikusinski, J. and Sikorski, R.: Theory of distributions, the sequential approach. PWN-Polish Scientific Publishers, Warsawa (1973)zbMATHGoogle Scholar
  4. [Bre65]
    Bremermann, J.H.: Distributions, complex variables, and Fourier transforms. Addison-Wesley, Reading, Massachusetts (1965)zbMATHGoogle Scholar
  5. [Li78]
    Li, B.H.: Non-standard analysis and multiplication of distributions. Sci. Sinica, 21(5), 561–585 (1978)MathSciNetGoogle Scholar
  6. [EGO92]
    Embacher, H.G., Grübl, G., Oberguggenberger, M.: Z. Anal. Anw., 11, 437–454 (1992)zbMATHGoogle Scholar
  7. [GS64]
    Gel’fand, I.M., Shilov, G.E.: Generalized functions. Vol. I. Academic Press, New York London (1964)zbMATHGoogle Scholar
  8. [Fis71]
    Fisher, B.: The product of distributions. Quart. J. Math. Oxford, 22, 291–298 (1971)zbMATHCrossRefGoogle Scholar
  9. [Fis74]
    Fisher, B.: The neutrix distribution product x +r δ (r−1). Studia Sci. Math. Hungar., 9, 439–441 (1974)MathSciNetGoogle Scholar
  10. [Fis82a]
    Fisher, B.: On defining the convoltion of distributions. Math. Nachr., 106, 261–269 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  11. [Fis82b]
    Fisher, B.: A non-commutative neutrix product of distributions. Math. Nachr., 108, 117–127 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  12. [Fis80]
    Fisher, B.: On defining the product of distributions. Math. Nachr., 99, 239–249 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  13. [KF03]
    Kilicman, A., Fisher, B.: On the Fresnel integrals and the convolution. Int. J. Math. Math. Sci., 41, 2635–2643 (2003)CrossRefMathSciNetGoogle Scholar
  14. [FT05a]
    Fisher, B., Taş, K.: The convolution of functions and distributions. J. Math. Anal. Appl., 306(1), 364–274 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  15. [FT06a]
    Fisher, B., Taş, K.: On the composition of the distributions x +λ and x +μ. J. Math. Anal. Appl., 318(1), 102–111 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  16. [FT05b]
    Fisher, B., Taş, K.: On the non-commutative neutrix product of the distributions x r lnp |x| and x −s. Integral Transform Spec. Funct., 16(2), 131–138 (2005)zbMATHCrossRefGoogle Scholar
  17. [FT06b]
    Fisher, B., Taş, K.: On the commutative product of distributions. J. Korean Math. Soc., 43(2), 271–281 (2006)zbMATHMathSciNetGoogle Scholar
  18. [FN98]
    Fisher, B., Nicholas, J.D.: Some results on the commutative neutrix product of distributions. J. Anal., 6, 33–44 (1998)zbMATHMathSciNetGoogle Scholar
  19. [Fis72]
    Fisher, B.: The product of the distributions x +r−1/2 and x r−1/2. Proc. Cambridge Philos. Soc., 71, 123–130 (1972)zbMATHMathSciNetGoogle Scholar
  20. [FL01]
    Fisher, B., Li, C.K.: On the cosine and sine integrals. Int. J. Appl. Math., 7(4), 419–437 (2001)MathSciNetzbMATHGoogle Scholar
  21. [FL93]
    Fisher, B., Li, C.K.: A commutative neutrix convolution product of distributions. Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 23(1), 13–27 (1993)zbMATHMathSciNetGoogle Scholar
  22. [FKL00]
    Fisher, B., Kilicman, A., Li, C.K.: An extension of a result on the non-commutative neutrix convolution product of distributions. Int. J. Appl. Math., 3(1), 71–80 (2000)zbMATHMathSciNetGoogle Scholar
  23. [Fis70]
    Fisher, B.: The generalized function (x + i0)λ. Proc. Camb. Phil. Soc., 68, 707–708 (1970)zbMATHGoogle Scholar
  24. [FÖG05]
    Fisher, B., Özçag, E., Gülen, Ü.: A theorem on the commutative neutrix product of distributions. Sarajevo J. Math., 1, 235–242 (2005)MathSciNetGoogle Scholar
  25. [vdC60]
    van der Corput, J.G.: Introduction to the neutrix calculus. J. Analyse Math., 7, 291–398 (1959)CrossRefGoogle Scholar
  26. [Li00]
    Li, C.K.: The product of r −k and ∇δ. Int. J. Math. Math. Sci., 24, 361–369 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  27. [Li01a]
    Li, C.K.: A note on the product r k · ∇(Δr 2−m). Integral Transform. Spec. Func., 12, 341–348 (2001)zbMATHCrossRefGoogle Scholar
  28. [LF:90]
    Li, C.K., Fisher, B.: Examples of the neutrix product of distributions on R m. Rad. Mat., 6, 129–137 (1990)zbMATHMathSciNetGoogle Scholar
  29. [CL05a]
    Li, C.K.: The products on the unit sphere and even-dimension spaces. J. Math. Anal. Appl., 305(1), 97–106 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  30. [Li05b]
    Li, C.K.: An approach for distributional products on R m. Integral Transforms Spec. Funct., 16(2), 139–151 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  31. [CL91]
    Cheng, L.Z. and Li, C.K.: A commutative neutrix product of distributions on R m. Math. Nachr., 151, 345–355 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  32. [CL88]
    Cheng, L.Z. and Li, C.K.: The product of generalized functions. J. Math. Res. Exposition, 8(4), 543–546 (1988)zbMATHMathSciNetGoogle Scholar
  33. [LK98]
    Li, C.K., Koh, E.L.: The neutrix convolution product in Z’(m) and the exchange formula. Int. J. Math. Math. Sci., 21(4), 695–700 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  34. [LZ04]
    Li, C.K., Zou, V.: On defining the product r −k · ∇l δ. Int. J. Math. Math. Sci., 16(13–16), 833–845 (2004)CrossRefMathSciNetGoogle Scholar
  35. [Li01b]
    Li, C.K.: The sequential approach to the product of distribution. Int. J. Math. Math. Sci., 28(12), 743–751 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  36. [KL93]
    Koh, E.L., Li, C.K.: On defining the generalized functions δ α(z) and δ n(x). Int. J. Math. Math. Sci., 16(4), 749–754 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  37. [Li03]
    Li, C.K.: The neutrix square of δ. Int. J. Appl. Math., 12(2), 115–124 (2003)zbMATHMathSciNetGoogle Scholar
  38. [LA04]
    Li, C.K., Aguirre, M.A.: The distributional products by the Laurent series. submitted.Google Scholar
  39. [KL92]
    Koh, E.L., Li, C.K.: On the distributions δ k and (δ’)k. Math. Nachr., 157, 243–258 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  40. [AL05]
    Aguirre, M.A., Li, C.K.: The distributional products of particular distributions. to appear in Applied Mathematics and Computation.Google Scholar
  41. [Agui03a]
    Aguirre, M.A.: A convolution product of (2j)-th derivative of Diracs delta in r and multiplicative distributional product between r −k and ∇(Δj δ). Int. J. Math. Math. Sci., 13, 789–799 (2003)MathSciNetGoogle Scholar
  42. [Agui03b]
    Aguirre, M.A.: The expansion in series (of Taylor Types) of (k−1) derivatrive of Diracs delta in m 2 + P. Integral Transform. Spec. Func., 14, 117–127 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  43. [Agui91]
    Aguirre, M.A.: The series expansion of δ (k)(rc). Mathematicae Notae, 35, 53–61 (1991)zbMATHMathSciNetGoogle Scholar
  44. [Öz01]
    Özçag, E.: Defining the kth powers of the Dirac-delta distribution for negative integers. Appl. Math. Lett., 14, 419–423 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  45. [Ler57]
    Leray, J.: Hyperbolic differential eqautions. The Institute for Advanced Study, Princeton New Jersey (1957)Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • C. K. Li
    • 1
  1. 1.Department of Mathematics and Computer ScienceBrandon UniversityBrandonCanada

Personalised recommendations