Skip to main content
Log in

Effect of TiO2 Nano-Filler on Electrical Properties of Na+ Ion Conducting PEO/PVDF Based Blended Polymer Electrolyte

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Nanocomposite polymer electrolyte (NCPE) films based on a blend of two polymers poly (ethylene oxide) (PEO) and poly (vinylidene fluoride) (PVDF) complexed with sodium perchlorate (NaClO4) salt and Nano-filler titanium dioxide (TiO2) (i.e., (80 wt% PEO/20 wt% PVDF) + 7.5 wt% NaClO4 + x wt% TiO2 where x = 3, 6, 9, 12, 15, and 18) were prepared and characterized as potential candidates for battery applications. Electrochemical impedance spectroscopy (EIS) has been employed between the frequencies 10 Hz and 4 MHz to investigate electrical, dielectric and electric modulus properties of the prepared NCPE films. Effect of TiO2 Nano-filler concentration on the structural, ionic conductivity, and dielectric relaxation has been studied. The AC conductivity of the NCPE films at high frequencies obeys Jonscher’s power law. The values of DC ionic conductivity calculated by fitting the AC conductivity spectra to the best fit of Joncher’s power law are consistent with the values of DC ionic conductivity calculated from the bulk resistance (Rb) of the NCPE films. The ionic conductivity that depends on temperature follows the Arrhenius rule between the temperatures 298 and 328 K. The maximum ionic conductivity at ambient temperature 8.75 × 10–5 S/cm was obtained for (80 wt% PEO/20 wt% PVDF) + 7.5wt% NaClO4 + 15 wt% TiO2 NCPE film and it is attributed to the decrease in crystallinity. Using Wagner’s polarization technique ionic transport numbers of various NCPE films were measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Yamada, Bull. Chem. Soc. Jpn. (2020). https://doi.org/10.1246/bcsj.20190314

    Article  Google Scholar 

  2. F.J. Sonia, M. Aslam, A. Mukhopadhyay, Carbon (2020). https://doi.org/10.1016/j.carbon.2019.09.026

    Article  Google Scholar 

  3. J.M. Tarascon, M. Armand, Nature (2001). https://doi.org/10.1038/35104644

    Article  PubMed  Google Scholar 

  4. D. Zhang, R. Li, T. Huang, A. Yu, J. Power Sources (2010). https://doi.org/10.1016/j.jpowsour.2009.08.063

    Article  Google Scholar 

  5. J.A. Lee, J.Y. Lee, M.H. Ryou, G.B. Han, J.N. Lee, D.J. Lee, J.K. Park, Y.M. Lee, J. Solid State Electrochem. (2011). https://doi.org/10.1007/s10008-010-1149-y

    Article  Google Scholar 

  6. V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-Gonzalez, T. Rojo, Energy Environ. Sci. (2012). https://doi.org/10.1039/C2EE02781J

    Article  Google Scholar 

  7. H.K. Koduru, Y.G. Marinov, G.B. Hadjichristov, N. Scaramuzza, Solid State Ionics (2019). https://doi.org/10.1016/j.ssi.2019.02.021

    Article  Google Scholar 

  8. L. Wang, Y. Lu, J. Liu, M. Xu, J. Cheng, D. Zhang, J.B. Goodenough, Angew. Chem. (2013). https://doi.org/10.1002/anie.201206854

    Article  Google Scholar 

  9. H.K. Koduru, L. Marino, F. Scarpelli, A.G. Petrov, Y.G. Marinov, G.B. Hadjichristov, M.T. Iliev, N. Scaramuzza, Curr. Appl. Phys. (2017). https://doi.org/10.1016/j.cap.2017.07.012

    Article  Google Scholar 

  10. G. Dave, D.K. Kanchan, Indian J. Pure Appl. Phys. 56, 978 (2018)

    Google Scholar 

  11. K.M. Anilkumar, B. Jinisha, M. Manoj, S. Jayalekshmi, Eur. Polym. J. (2017). https://doi.org/10.1016/j.eurpolymj.2017.02.004

    Article  Google Scholar 

  12. S. Nidhi, R. Patel, Kumar. J Alloys Compd. (2019). https://doi.org/10.1016/j.jallcom.2019.03.089

    Article  Google Scholar 

  13. K. Murata, Electrochim. Acta (1995). https://doi.org/10.1016/0013-4686(95)00160-G

    Article  Google Scholar 

  14. A. Chandra, A. Chandra, K. Thakur, Chin. J. Polym. Sci. (2013). https://doi.org/10.1007/s10118-013-1223-x

    Article  Google Scholar 

  15. H.W. Zhang, P.K. Shen, Chem. Rev. (2012). https://doi.org/10.1021/cr200035s

    Article  PubMed  Google Scholar 

  16. Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, Nat Energy (2016). https://doi.org/10.1038/nenergy.2016.30

    Article  Google Scholar 

  17. J. Li, C. Ma, M. Chi, C. Liang, N.J. Dudney, Adv. Energy Mater. (2015). https://doi.org/10.1002/aenm.201401408

    Article  Google Scholar 

  18. L. Yue, J. Ma, J. Zhang, J. Zhao, S. Dong, Z. Liu, G. Cui, L. Chen, Energy Storage Mater. (2016). https://doi.org/10.1016/j.ensm.2016.07.003

    Article  Google Scholar 

  19. Q. Zhang, K. Liu, F. Ding, X. Liu, Nano Res. (2017). https://doi.org/10.1007/s12274-017-1763-4

    Article  Google Scholar 

  20. M. Gracia, D. Armand, Shanmukaraj, Solid Electrolytes for Advanced Applications (Springer, Cham, 2019), pp. 347–373

    Book  Google Scholar 

  21. F.H.A. El-kader, N.A. Hakeem, R.S. Hafez, A.M. Ismail, J. Inorg. Organomet. Polym. Mater. (2017). https://doi.org/10.1007/s10904-017-0763-x

    Article  Google Scholar 

  22. D.W. Kim, J.K. Park, H.W. Rhee, Solid State Ionics (1996). https://doi.org/10.1016/0167-2738(95)00238-3

    Article  Google Scholar 

  23. P. Dhatarwal, R.J. Sengwa, Indian J. Pure. Appl. Phys. 55, 7 (2017)

    Google Scholar 

  24. S. Das, A. Ghosh, Electrochim. Acta (2015). https://doi.org/10.1016/j.electacta.2015.04.178

    Article  Google Scholar 

  25. Y.L. Nimah, M.Y. Cheng, J.H. Cheng, J. Rick, B.J. Hwang, J. Power Sources (2015). https://doi.org/10.1016/j.jpowsour.2014.11.047

    Article  Google Scholar 

  26. M.A.K.L. Dissanayake, Ionics (2004). https://doi.org/10.1007/BF02382820

    Article  Google Scholar 

  27. S. Choudhary, R.J. Sengwa, J. Inorg. Organomet. Polym. Mater. (2019). https://doi.org/10.1007/s10904-018-1034-1

    Article  Google Scholar 

  28. T.P. Nguyen, Surf. Coat Technol. (2011). https://doi.org/10.1016/j.surfcoat.2011.07.010

    Article  Google Scholar 

  29. A. Hashim, Q. Hadi, J. Inorg. Organomet. Polym. Mater. (2018). https://doi.org/10.1007/s10904-018-0837-4

    Article  Google Scholar 

  30. M. Mohamadi, H. Garmabi, M. Papila, Macromol. Res. (2016). https://doi.org/10.1007/s13233-016-4099-0

    Article  Google Scholar 

  31. K. Xu, Chem. Rev. (2014). https://doi.org/10.1021/cr500003w

    Article  PubMed  Google Scholar 

  32. E. Quartarone, P. Mustarelli, Chem. Soc. Rev. (2011). https://doi.org/10.1039/C0CS00081G

    Article  PubMed  Google Scholar 

  33. H.S. Choe, J. Giaccai, M. Alamgir, K.M. Abraham, Elecrochim. Acta (1995). https://doi.org/10.1016/0013-4686(95)00180-M

    Article  Google Scholar 

  34. F. Croce, G.B. Appetecchi, S. Slane, M. Salomon, M. Tavarez, S. Arumugam, Y. Wang, S.G. Reenbaum, Solid State Ionics (1996). https://doi.org/10.1016/0167-2738(96)00137-3

    Article  Google Scholar 

  35. A. Ramanavicius, P. Genys, Y. Oztekin, A. Ramanaviciene, J. Electrochem. Soc. (2014). https://doi.org/10.1149/2.021403jes

    Article  Google Scholar 

  36. A. Ramanavicius, P. Genys, A. Ramanaviciene, Elecrochim. Acta (2014). https://doi.org/10.1016/j.electacta.2014.08.130

    Article  Google Scholar 

  37. A.M. Gaur, D.S. Rana, J. Inorg. Organomet. Polym. Mater. (2019). https://doi.org/10.1007/s10904-019-01126-y

    Article  Google Scholar 

  38. P. Dhatarwal, R.J. Sengwa, Macromol. Res. (2019). https://doi.org/10.1007/s13233-019-7142-0

    Article  Google Scholar 

  39. R.J. Sengwa, S. Choudhary, P. Dhatarwal, J. Mater. Sci. (2019). https://doi.org/10.1007/s10854-019-01587-4

    Article  Google Scholar 

  40. K.K. Ganta, V.R. Jeedi, K.V. Kumar, E.L. Narsaiah, J. Green Eng. 10, 5589 (2020)

    Google Scholar 

  41. N. Angulakshmi, D.J. Yoo, K.S. Nahm, C. Gerbaldi, A.M. Stephan, Ionics (2013). https://doi.org/10.1007/s11581-013-0985-z

    Article  Google Scholar 

  42. P. Prabakaran, R.P. Manimuthu, S. Gurusamy, J. Solid State Electrochem. (2016). https://doi.org/10.1007/s10008-016-3477-z

    Article  Google Scholar 

  43. N.K. Singh, M.L. Verma, M. Minakshi, Bull. Mater. Sci. (2015). https://doi.org/10.1007/s12034-015-0980-2

    Article  Google Scholar 

  44. E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd edn. (Wiley, Hoboken, NJ, 2015), p. 616

    Google Scholar 

  45. S.B. Aziz, T.J. Woo, M.F.Z. Kadir, H.M. Ahmed, J. Science, Adv. Mater. Devices (2018). https://doi.org/10.1016/j.jsamd.2018.01.002

    Article  Google Scholar 

  46. D. Vanitha, S.A. Bahadur, N. Nallamuthu, S. Athimoolam, A. Manikandan, J. Inorg. Organomet. Polym. Mater. (2016). https://doi.org/10.1007/s10904-016-0468-6

    Article  Google Scholar 

  47. K. Sundaramahalingam, M. Muthuvinayagam, N. Nallamuthu, Polym. Sci. A (2019). https://doi.org/10.1134/S0965545X19050171

    Article  Google Scholar 

  48. S.K.S. Basha, G.S. Sundari, K.V. Kumar, M.C. Rao, Polym. Bull. (2018). https://doi.org/10.1007/s00289-017-2072-5

    Article  Google Scholar 

  49. I.M. Hodge, M.D. Ingram, A.R. West, J. Electroanal. Chem. (1976). https://doi.org/10.1016/S0022-0728(76)80229-X

    Article  Google Scholar 

  50. S.R. Majid, A.K. Arof, Phys. B (2007). https://doi.org/10.1016/j.physb.2006.08.038

    Article  Google Scholar 

  51. R. Manjuladevi, M. Thamilselvan, S. Selvasekarapandian, R. Mangalam, M. Premalatha, S. Monisha, Solid State Ionics (2017). https://doi.org/10.1016/j.ssi.2017.06.002

    Article  Google Scholar 

  52. R.S. Hafez, N.A. Hakeem, A.A. Ward, A.M. Ismail, F.H.A. El-kader, J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01637-z

    Article  Google Scholar 

  53. V.R. Jeedi, E.L. Narsaiah, M. Yalla, R. Swarnalatha, S.N. Reddy, A.S. Chary, Appl. Sci. (2020). https://doi.org/10.1007/s42452-020-03868-8

    Article  Google Scholar 

  54. S. Choudhary, R.J. Sengwa, Indian J. Pure. Appl. Phys. 49, 204 (2011)

    CAS  Google Scholar 

  55. A. Karmakar, A. Ghosh, Curr. Appl. Phys. (2012). https://doi.org/10.1016/j.cap.2011.08.017

    Article  Google Scholar 

  56. R.J. Sengwa, P. Dhatarwal, S. Choudhary, Solid State Ionics (2018). https://doi.org/10.1016/j.ssi.2018.07.015

    Article  Google Scholar 

  57. K.K. Ganta, V.R. Jeedi, K.V. Kumar, E.L. Narsaiah, Int. J. Polym. Anal. Charact. (2020). https://doi.org/10.1080/1023666X.2020.1860396

    Article  Google Scholar 

  58. P. Pal, A. Ghosh, Solid State Ionics (2018). https://doi.org/10.1016/j.ssi.2018.02.009

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the management of B V Raju Institute of Technology (BVRIT-N), Narsapur for continuous support.

Funding

The Jawaharlal Nehru Technological University Hyderabad (JNTUH), India, financially supported this work under grant JNTUH/TEQIP-III/CRS/2019/Physics/04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laxmi Narsaiah Emmadi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article. The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganta, K.K., Jeedi, V.R., Katrapally, V. et al. Effect of TiO2 Nano-Filler on Electrical Properties of Na+ Ion Conducting PEO/PVDF Based Blended Polymer Electrolyte. J Inorg Organomet Polym 31, 3430–3440 (2021). https://doi.org/10.1007/s10904-021-01947-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01947-w

Keywords

Navigation