Journal of Cluster Science

, Volume 28, Issue 4, pp 2041–2056 | Cite as

Facile Aglaia elaeagnoidea Mediated Synthesis of Silver and Gold Nanoparticles: Antioxidant and Catalysis Properties

  • G. Manjari
  • S. Saran
  • T. Arun
  • Suja P. Devipriya
  • A. Vijaya Bhaskara Rao
Original Paper


A facile and green route for the synthesis of metallic nanoparticles is of significant intriguing, as it provides simple, rapid, clean, nontoxic, easily available, energy-efficient, cost-effective fabrication method. We reported environmentally benign and unexplored plant Aglaia elaeagnoidea flower extract for the synthesis of spherical and crystalline silver (Ag) and gold (Au) nanoparticles with an excellent robustness against agglomeration. The resultant nanoparticles were characterized using UV–Vis spec., FTIR, XRD, FESEM, EDAX, and TEM techniques. The uniqueness of our method lies in fast synthesis (10 min for Ag NPs) and ultra rapid homogeneous and heterogeneous complete degradation of Methylene Blue and Congo Red within few seconds using the synthesized Ag and Au NPs as the catalyst, respectively. Whereas more than 90% conversion of 4-Nitrophenol to 4-Aminophenol within few minutes for homogenous and few seconds for heterogeneous method using Ag and Au NPs were obtained. Hence, the results of this study demonstrate the possible application of biosynthesized of Ag and Au NPs as nanocatalyst in waste water treatment.


Green synthesis Aglaia elaeagnoidea Silver and gold nanoparticles Catalysis Antioxidant 



The authors are thankful to Pondicherry University for providing fellowship for the first two authors. We also thanks to Mr. V. Kiran Kumar, Ms. Savitha Veeraragavan and Bharathi for their continuous encouragement during the work.


  1. 1.
    N. A. Begum, S. Mondal, S. Basu, R. A. Laskar, and D. Mandal (2009). Colloids Surf. B Biointerfaces 71, 113.CrossRefGoogle Scholar
  2. 2.
    K. N. Thakkar, S. S. Mhatre, and R. Y. Parikh (2010). Nanomed. Nanotechnol. Bio. Med. 6, 257.CrossRefGoogle Scholar
  3. 3.
    M. C. Moulton, L. K. Braydich-Stolle, M. N. Nadagouda, S. Kunzelman, S. M. Hussain, and R. S. Varma (2010). Nanoscale 2, 763.CrossRefGoogle Scholar
  4. 4.
    V. K. Vidhu and D. Philip (2014). Spectrochim. Acta Mol. Biomol. Spectrosc. 117, 102.CrossRefGoogle Scholar
  5. 5.
    S. Yallappa, J. Manjanna, S. K. Peethambar, A. N. Rajeshwara, and N. D. Satyanarayan (2013). J. Clust. Sci. 24, 1081.CrossRefGoogle Scholar
  6. 6.
    V. K. Vidhu and D. Philip (2014). Micron 56, 54.CrossRefGoogle Scholar
  7. 7.
    P. Prakash, P. Gnanaprakasam, R. Emmanuel, S. Arokiyaraj, and M. Saravananc (2013). Colloids Surf. B 108, 255.CrossRefGoogle Scholar
  8. 8.
    R. Mariselvam, A. J. Ranjitsingh, A. U. Nanthini, K. Kalirajan, C. Padmalatha, and P. M. Selvakumar (2014). Spectrochim. Acta Mol. Biomol. Spectrosc. 129, 537.CrossRefGoogle Scholar
  9. 9.
    J. Y. Song, H. K. Jang, and S. B. Kim (2009). Process Biochem. 44, 1133.CrossRefGoogle Scholar
  10. 10.
    S. Maity, I. K. Sen, and S. S. Islam (2012). Phys. E 45, 130.CrossRefGoogle Scholar
  11. 11.
    A. Lateef, S. A. Ojo, B. I. Folarin, E. B. Gueguim-Kana, L. S. Beukes, and Kolanut (2016). J Clust. Sci. 27, 1561.CrossRefGoogle Scholar
  12. 12.
    T. Y. Suman, S. R. R. Rajshree, R. Ramkumar, C. Rajthilak, and P. Perumal (2014). Spectrochim. Acta A 118, 11.CrossRefGoogle Scholar
  13. 13.
    K. T. Chung and C. E. Cerniglia (1992). Mutat. Res./Rev. Genet. Toxicol. 277, 201.CrossRefGoogle Scholar
  14. 14.
    J. Xia, G. He, L. Zhang, X. Sun, and X. Wang (2016). Appl. Catal. B Env. 180, 408.CrossRefGoogle Scholar
  15. 15.
    M. Nasrollahzadeh, S. M. Sajadi, and M. Khalaj (2014). RSC Adv. 4, 47313.CrossRefGoogle Scholar
  16. 16.
    D. S. Sheny, D. Philip, and J. Mathew (2012). Spectrochim. Acta Mol. Biomol. Spectrosc. 91, 35.CrossRefGoogle Scholar
  17. 17.
    T. Shahwan, S. A. Sirriah, M. Nairat, E. Boyacı, A. E. Eroglu, T. B. Scott, and K. R. Hallam (2011). Chem. Eng. J. 172, 258.CrossRefGoogle Scholar
  18. 18.
    C. P. Khare (2008). Spring. Sci. Bus. Med., pp. 34–35.Google Scholar
  19. 19.
    K. K. N. Nair (1981). Bombay Nat. Hist. Soc. J. 78, 425.Google Scholar
  20. 20.
    M. J. Bhandary and K. R. Chandrashekar (2011). Indian J. Tradit. Know. 10, 528.Google Scholar
  21. 21.
    B. Jayaprasad, and P. S. Sharavanan, Int. Res. J. Pharm. 4, 29.Google Scholar
  22. 22.
    G. E. Trease, and W. C. Evans (1989). Pharmacognosy. 11th Edn. BrailliarTiridel Can. Macmillian Publishers 5, 10.Google Scholar
  23. 23.
    A. J. Harborne (1998). Spring. Sci. Bus. Med.Google Scholar
  24. 24.
    C. K. Kokate (2000). Pract. Pharm. 9.Google Scholar
  25. 25.
    J. F. Moran, R. V. Klucas, R. J. Grayer, J. Abian, and M. Becana (1997). Free Radic. Biol. Med. 22, 861.CrossRefGoogle Scholar
  26. 26.
    M. Mathur (2014). Int. J. Pure App. Biosci. 2, 113.Google Scholar
  27. 27.
    N. Ahmad, S. Sharma, M. K. Alam, V. N. Singh, S. F. Shamsi, B. R. Mehta, and A. Fatma (2010). Colloids Surf., B Biointerfaces 81, 81.Google Scholar
  28. 28.
    R. K. Das, S. K. Brar, and M. Verma (2016). Trends Biotechnol. 34, 440.CrossRefGoogle Scholar
  29. 29.
    C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li (2005). J. Phys. Chem. B 109, 13857.CrossRefGoogle Scholar
  30. 30.
    P. Mulvaney (1996). Langmuir 12, 788.CrossRefGoogle Scholar
  31. 31.
    S. S. Momeni, M. Nasrollahzadeh, and A. Rustaiyan (2016). J. Colloids Interface. Sci. 472, 173.CrossRefGoogle Scholar
  32. 32.
    A. Sadollahkhani, Z. H. Ibupoto, S. Elhag, O. Nur, and M. Willander (2014). Ceram. Int. 40, 11311.CrossRefGoogle Scholar
  33. 33.
    N. Singh and P. K. Khanna (2007). Mater. Chem. Phys. 104, 367.CrossRefGoogle Scholar
  34. 34.
    C. T. Kamala, K. H. Chu, N. S. Chary, P. K. Pandey, S. L. Ramesh, A. R. Sastry, and K. C. Sekhar (2005). Water Res. 39, 2815.CrossRefGoogle Scholar
  35. 35.
    G. W. Jeong, Y. W. Lee, M. Kim, and S. W. Han (2009). J. Colloids Interface Sci. 329, 97.CrossRefGoogle Scholar
  36. 36.
    H. Borchert, E. V. Shevchenko, A. Robert, I. Mekis, A. Kornowski, G. Grübel, and H. Weller (2005). Langmuir 21, 1931.CrossRefGoogle Scholar
  37. 37.
    D. Wei, Y. Ye, X. Jia, C. Yuan, and W. Qian (2010). Carbohydr. Res. 345, 74.CrossRefGoogle Scholar
  38. 38.
    I. Laoufi, M. C. Saint-Lager, R. Lazzari, J. Jupille, O. Robach, S. Garaudée, G. Cabailh, P. Dolle, H. Cruguel, and A. Bailly (2011). J. Phys. Chem. C 115, 4673.CrossRefGoogle Scholar
  39. 39.
    M. A. Rauf, M. A. Meetani, A. Khaleel, and A. Ahmed (2010). Chem. Eng. J. 157, 373.CrossRefGoogle Scholar
  40. 40.
    V. S. Suvith and D. Philip (2014). Spectrochim. Acta Mol. Biomol. Spectrosc. 118, 526.CrossRefGoogle Scholar
  41. 41.
    L. Xu, X. C. Wu, and J. J. Zhu (2008). Nano. 19, 305603.Google Scholar
  42. 42.
    T. Kamal, S. B. Khan, and A. M. Asiri (2016). Cellulose 23, 1911.CrossRefGoogle Scholar
  43. 43.
    N. Pradhan, A. Pal, and T. Pal (2001). Langmuir 17, 1800.CrossRefGoogle Scholar
  44. 44.
    D. M. Dotzauer, J. Dai, L. Sun, and M. L. (2006). Bruening Nano Lett. 6, 2268.Google Scholar
  45. 45.
    J. Huang, S. Vongehr, S. Tang, H. Lu, and X. Meng (2010). J. Phys. Chem. C 114, 15005.CrossRefGoogle Scholar
  46. 46.
    H. Zhang, X. Li, and G. Chen (2009). J. Mater. Chem. 19, 8223.CrossRefGoogle Scholar
  47. 47.
    K. B. Narayanan, H. H. Park, and N. Sakthivel (2013). Spectrochim. Acta Mol. Biomol. Spectrosc. 116, 485.CrossRefGoogle Scholar
  48. 48.
    B. Baruah, G. J. Gabriel, M. J. Akbashev, and M. E. Booher (2013). Langmuir 29, 4225.CrossRefGoogle Scholar
  49. 49.
    J. Park, S. H. Cha, S. Cho, and Y. Park (2016). J. Nano Res. 18, 1.CrossRefGoogle Scholar
  50. 50.
    B. Xia, F. He, and L. Li (2013). Langmuir 29, 4901.CrossRefGoogle Scholar
  51. 51.
    M. Sharma, A. Mishra, V. Kumar, and S. Basu (2016). Nano 11, 1650046.CrossRefGoogle Scholar
  52. 52.
    A. Gangula, R. Podila, L. Karanam, C. Janardhana, and A. M. Rao (2011). Langmuir 27, 15268.CrossRefGoogle Scholar
  53. 53.
    L. K. Sen, K. Maity, and S. S. Islam (2013). Carbohydr. Polym. 91, 518.CrossRefGoogle Scholar
  54. 54.
    P. Siddhuraju, P. S. Mohan, and K. Becker (2002). J. Agric. Food Chem. 79, 67.Google Scholar
  55. 55.
    K. L. Niraimathi, V. Sudha, R. Lavanya, and P. Brindha (2013). Colloids Surf. B. Biointerfaces 102, 288.CrossRefGoogle Scholar
  56. 56.
    K. Saritha and U. Saraswathi (2014). World J. Pharm. Sci. 2, 1545.Google Scholar
  57. 57.
    S. S. Paul, J. P. Saikia, S. K. Samdarshi, and B. K. Konwar (2009). J. Magn. Magn. Mater. 321, 3621.CrossRefGoogle Scholar
  58. 58.
    P. Saikia, S. Saikia, J. P. S. Paul, B. K. Konwar, and S. K. Samdarshi (2010). Colloids Surf. B: Biointerfaces 78, 146.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • G. Manjari
    • 1
  • S. Saran
    • 1
  • T. Arun
    • 2
  • Suja P. Devipriya
    • 1
  • A. Vijaya Bhaskara Rao
    • 1
  1. 1.Department of Ecology and Environmental SciencesPondicherry UniversityPuducherryIndia
  2. 2.Institute of PhysicsBhubaneswarIndia

Personalised recommendations