Skip to main content
Log in

APSY-NMR for protein backbone assignment in high-throughput structural biology

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

A standard set of three APSY-NMR experiments has been used in daily practice to obtain polypeptide backbone NMR assignments in globular proteins with sizes up to about 150 residues, which had been identified as targets for structure determination by the Joint Center for Structural Genomics (JCSG) under the auspices of the Protein Structure Initiative (PSI). In a representative sample of 30 proteins, initial fully automated data analysis with the software UNIO-MATCH-2014 yielded complete or partial assignments for over 90 % of the residues. For most proteins the APSY data acquisition was completed in less than 30 h. The results of the automated procedure provided a basis for efficient interactive validation and extension to near-completion of the assignments by reference to the same 3D heteronuclear-resolved [1H,1H]-NOESY spectra that were subsequently used for the collection of conformational constraints. High-quality structures were obtained for all 30 proteins, using the J-UNIO protocol, which includes extensive automation of NMR structure determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Atreya HS, Sahu SC, Chary KVR, Govil G (2000) A tracked approach for automated NMR assignments in proteins (TATAPRO). J Biomol NMR 17:125–136

    Article  Google Scholar 

  • Bartels C, Güntert P, Billeter M, Wüthrich K (1997) GARANT: a general algorithm for resonance assignment in multidimensional nuclear magnetic resonance spectra. J Comput Chem 18:139–149

    Article  Google Scholar 

  • Crippen GM, Rousaki A, Revington M, Zhang Y, Zuiderweg ERP (2010) SAGA: rapid automatic mainchain NMR assignment for large proteins. J Biomol NMR 46:281–298

    Article  Google Scholar 

  • DeMarco A, Wüthrich K (1976) Digital filtering with a sinusoidal window function: an alternative technique for resolution enhancement in FT NMR. J Magn Reson 24:201–204

    ADS  Google Scholar 

  • Fiorito F, Hiller S, Wider G, Wüthrich K (2006) Automated resonance assignment of proteins: 6D APSY-NMR. J Biomol NMR 35:27–37

    Article  Google Scholar 

  • Fiorito F, Herrmann T, Damberger FF, Wüthrich K (2008) Automated amino acid side-chain NMR assignment of proteins using 13C- and 15 N-resolved 3D [1H,1H]-NOESY. J Biomol NMR 42:23–33

    Article  Google Scholar 

  • Fredriksson J, Bermel W, Staykova DK, Billeter M (2012) Automated protein backbone assignment using the projection-decomposition approach. J Biomol NMR 54:43–51

    Article  Google Scholar 

  • Güntert P, Mumenthaler C, Wüthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273:283–298

    Article  Google Scholar 

  • Herrmann T, Güntert P, Wüthrich K (2002a) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319:209–227

    Article  Google Scholar 

  • Herrmann T, Güntert P, Wüthrich K (2002b) Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS. J Biomol NMR 24:171–189

    Article  Google Scholar 

  • Hiller S, Fiorito F, Wüthrich K, Wider G (2005) Automated projection spectroscopy (APSY). Proc Natl Acad Sci USA 102:10876–10881

    Article  ADS  Google Scholar 

  • Hiller S, Wider G, Wüthrich K (2008) APSY-NMR with proteins: practical aspects and backbone assignment. J Biomol NMR 42:179–195

    Article  Google Scholar 

  • Jaudzems K, Pedrini B, Geralt M, Serrano P, Wüthrich K (2014) J-UNIO protocol used for NMR structure determination of the 206-residue protein NP_346487.1 from Streptococcus pneumoniae TIGR4. J Biomol NMR. doi:10.1007/s10858-014-9886-3

  • Keller R (2004) Computer-aided resonance assignment. Cantina. http://cara.nmr.ch/

  • Lee W, Hu K, Tonelli M, Bahrami A, Neuhardt E, Glass KC, Markley JL (2013) Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers. J Magn Reson 236:83–88

    Article  ADS  Google Scholar 

  • Lee W, Stark JL, Markley JL (2014) PONDEROSA-C/S: client–server based software package for automated protein 3D structure determination. J Biomol NMR 60:73–75

    Article  Google Scholar 

  • Lemak A, Steren CA, Arrowsmith CH, Llinás M (2008) Sequence specific resonance assignment via multicanonical Monte Carlo search using an ABACUS approach. J Biomol NMR 41:29–41

    Article  Google Scholar 

  • Lescop E, Brutscher B (2009) Highly automated protein backbone resonance assignment within a few hours: the «BATCH» strategy and software package. J Biomol NMR 44:43–57

    Article  Google Scholar 

  • Mohanty B, Serrano P, Geralt M, Wüthrich K (2014) NMR structure determination of the protein NP_344798.1 as the first representative of Pfam PF06042. J Biomol NMR. doi:10.1007/s10858-014-9878-3

  • Moseley HN, Monleon D, Montelione GT (2001) Automatic determination of protein backbone resonance assignments from triple resonance nuclear magnetic resonance data. Meth Enzym 399:91–108

    Article  Google Scholar 

  • Pedrini B, Serrano P, Mohanty B, Geralt M, Wüthrich K (2013) NMR-Profiles of protein solutions. Biopolymers 99:825–831

    Article  Google Scholar 

  • Schmidt E, Güntert P (2012) A new algorithm for reliable and general NMR resonance assignment. J Am Chem Soc 134:12817–12829

    Article  Google Scholar 

  • Schmidt E, Güntert P (2013) Reliability of exclusively NOESY-based automated resonance assignment and structure determination of proteins. J Biomol NMR 57:193–204

    Article  Google Scholar 

  • Schmucki R, Yokohama S, Güntert P (2009) Automated assignment of NMR chemical shifts using peak-particle dynamics simulation with the DYNASSIGN algorithm. J Biomol NMR 43:97–109

    Article  Google Scholar 

  • Serrano P, Pedrini B, Mohanty B, Geralt M, Herrmann T, Wüthrich K (2012) The J-UNIO protocol for automated protein structure determination by NMR in solution. J Biomol NMR 53:341–354

    Article  Google Scholar 

  • Staykova DK, Fredriksson J, Bermel W, Billeter M (2008) Assignment of protein NMR spectra based on projections, multi-way decomposition and a fast correlation approach. J Biomol NMR 42:87–97

    Article  Google Scholar 

  • Tikole S, Jaravine V, Rogov VV, Rozenknop A, Schmöe K, Löhr F, Dötsch V, Güntert P (2012) Fast automated NMR spectroscopy of short-lived biological samples. ChemBioChem 13:964–967

    Article  Google Scholar 

  • Volk J, Herrmann T, Wüthrich K (2008) Automated sequence-specific protein NMR assignment using the memetic algorithm MATCH. J Biomol NMR 41:127–138

    Article  Google Scholar 

  • Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New York

    Google Scholar 

  • Wüthrich K (2011) Celebrating its 20th anniversary in 2011, the Journal of Biomolecular NMR looks forward to the second decade of the 21st century. J Biomol NMR 49:1–2

    Article  Google Scholar 

  • Zawadzka-Kazimierczuk A, Koźmiński W, Billeter M (2012) TSAR: a program for automatic resonance assignment using 2D cross-sections of high dimensionality, high-resolution spectra. J Biomol NMR 54:81–95

    Article  Google Scholar 

  • Zimmermann DE, Kulikowski CA, Huang Y, Feng W, Tashiro M, Shimotakahara S, Chien C, Powers R, Montelione GT (1997) Automated analysis of protein NMR assignments using methods from artificial intelligence. J Mol Biol 269:592–610

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Joint Center for Structural Genomics through the NIH Protein Structure Initiative (PSI) grant U540-GM074898 from the National Institute of General Medical Sciences (www.nigms.nih.gov). Kurt Wüthrich is the Cecil H. and Ida M. Green Professor of Structural Biology at The Scripps Research Institute. We thank our TSRI graduate students Bryan Martin, Sergey Shnitkind, Lukas Susac and Arndt Wallmann, who each provided the APSY-based assignments for one of the proteins in Table 1. T.H. thanks his graduate student Viet Dung Duong for contributions to the software UNIO-MATCH-2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Wüthrich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, S.K., Serrano, P., Proudfoot, A. et al. APSY-NMR for protein backbone assignment in high-throughput structural biology. J Biomol NMR 61, 47–53 (2015). https://doi.org/10.1007/s10858-014-9881-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-014-9881-8

Keywords

Navigation