Skip to main content
Log in

Highly automated protein backbone resonance assignment within a few hours: the «BATCH» strategy and software package

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Sequential resonance assignment represents an essential step towards the investigation of protein structure, dynamics, and interaction surfaces. Although the experimental sensitivity has significantly increased in recent years, with the availability of high field magnets and cryogenically cooled probes, resonance assignment, even of small globular proteins, still generally requires several days of data collection and analysis using standard protocols. Here we introduce the BATCH strategy for fast and highly automated backbone resonance assignment of 13C, 15N-labelled proteins. BATCH makes use of the fast data acquisition and analysis tools BEST, ASCOM, COBRA, and HADAMAC, recently developed in our laboratory. An improved Hadamard encoding scheme, presented here, further increases the performance of the HADAMAC experiment. A new software platform, interfaced to the NMRView software package, has been developed that enables highly automated NMR data processing and analysis, sequential resonance assignment, and 13C chemical shift extraction. We demonstrate for four small globular proteins that sequential resonance assignment can be routinely obtained within a few hours, or less, in a highly automated and robust way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atreya HS, Szyperski T (2004) G-matrix Fourier transform NMR spectroscopy for complete protein resonance assignment. Proc Natl Acad Sci U S A 101:9642–9647

    Article  ADS  Google Scholar 

  • Bartels C, Güntert P, Billeter M, Wüthrich K (1997) GARANT—a general algorithm for resonance assignment of multidimensional nuclear magnetic resonance spectra. J Comput Chem 18:139–149

    Article  Google Scholar 

  • Blevins RA, Johnson BA (1994) NMRView: a computer program for the visualization and analysis of NMR data. J Biomol NMR 4:603–614

    Article  Google Scholar 

  • Bruschweiler R (2004) Theory of covariance nuclear magnetic resonance spectroscopy. J Chem Phys 121:409–414

    Article  ADS  Google Scholar 

  • Brutscher B (2004) Combined frequency- and time-domain NMR spectroscopy. Application to fast protein resonance assignment. J Biomol NMR 29:57–64

    Article  Google Scholar 

  • Brutscher B, Simorre JP, Caffrey MS, Marion D (1994) Design of a complete set of two-dimensional triple-resonance experiments for assigning labeled proteins. J Magn Reson B 105:77–82

    Article  Google Scholar 

  • Coggins BE, Zhou P (2003) PACES: protein sequential assignment by computer-assisted exhaustive search. J Biomol NMR 26:93–111

    Article  Google Scholar 

  • Cornilescu G, Bahrami A, Tonelli M, Markley JL, Eghbalnia HR (2007) HIFI-C: a robust and fast method for determining NMR couplings from adaptive 3D to 2D projections. J Biomol NMR 38:341–351

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Deschamps M, Campbell ID (2006) Cooling overall spin temperature: protein NMR experiments optimized for longitudinal relaxation effects. J Magn Reson 178:206–211

    Article  ADS  Google Scholar 

  • Friedrichs MS, Mueller L, Wittekind M (1994) An automated procedure for the assignment of protein 1HN, 15N, 13C alpha, 1H alpha, 13C beta and 1H beta resonances. J Biomol NMR 4:703–726

    Article  Google Scholar 

  • Frydman L, Scherf T, Lupulescu A (2002) The acquisition of multidimensional NMR spectra within a single scan. Proc Natl Acad Sci U S A 99:15858–15862

    Article  ADS  Google Scholar 

  • Frydman L, Lupulescu A, Scherf T (2003) Principles and features of single-scan two-dimensional NMR spectroscopy. J Am Chem Soc 125:9204–9217

    Article  Google Scholar 

  • Gal M, Schanda P, Brutscher B, Frydman L (2007) UltraSOFAST HMQC NMR and the repetitive acquisition of 2D protein spectra at Hz rates. J Am Chem Soc 129:1372–1377

    Article  Google Scholar 

  • Hiller S, Fiorito F, Wuthrich K, Wider G (2005) Automated projection spectroscopy (APSY). Proc Natl Acad Sci U S A 102:10876–10881

    Article  ADS  Google Scholar 

  • Jaravine VA, Orekhov VY (2006) Targeted acquisition for real-time NMR spectroscopy. J Am Chem Soc 128:13421–13426

    Article  Google Scholar 

  • Jaravine V, Ibraghimov I, Orekhov VY (2006) Removal of a time barrier for high-resolution multidimensional NMR spectroscopy. Nat Methods 3:605–607

    Article  Google Scholar 

  • Jaravine VA, Zhuravleva AV, Permi P, Ibraghimov I, Orekhov VY (2008) Hyperdimensional NMR spectroscopy with nonlinear sampling. J Am Chem Soc 130:3927–3936

    Article  Google Scholar 

  • Jung YS, Zweckstetter M (2004) Mars—robust automatic backbone assignment of proteins. J Biomol NMR 30:11–23

    Article  Google Scholar 

  • Kazimierczuk K, Kozminski W, Zhukov I (2006) Two-dimensional Fourier transform of arbitrarily sampled NMR data sets. J Magn Reson 179:323–328

    Article  ADS  Google Scholar 

  • Kim S, Szyperski T (2003) GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information. J Am Chem Soc 125:1385–1393

    Article  Google Scholar 

  • Kupce E, Freeman R (2003a) Frequency-domain Hadamard spectroscopy. J Magn Reson 162:158–165

    Article  ADS  Google Scholar 

  • Kupce E, Freeman R (2003b) Projection-reconstruction of three-dimensional NMR spectra. J Am Chem Soc 125:13958–13959

    Article  Google Scholar 

  • Lescop E, Brutscher B (2007) Hyperdimensional protein NMR spectroscopy in peptide-sequence space. J Am Chem Soc 129:11916–11917

    Article  Google Scholar 

  • Lescop E, Schanda P, Brutscher B (2007a) A set of BEST triple-resonance experiments for time-optimized protein resonance assignment. J Magn Reson 187:163–169

    Article  ADS  Google Scholar 

  • Lescop E, Schanda P, Rasia R, Brutscher B (2007b) Automated spectral compression for fast multidimensional NMR and increased time resolution in real-time NMR spectroscopy. J Am Chem Soc 129:2756–2757

    Article  Google Scholar 

  • Lescop E, Rasia R, Brutscher B (2008) Hadamard amino-acid-type edited NMR experiment for fast protein resonance assignment. J Am Chem Soc 130:5014–5015

    Article  Google Scholar 

  • Leutner M, Gschwind RM, Liermann J, Schwarz C, Gemmecker G, Kessler H (1998) Automated backbone assignment of labeled proteins using the threshold accepting algorithm. J Biomol NMR 11:31–43

    Article  Google Scholar 

  • Lin G, Xu D, Chen ZZ, Jiang T, Wen J, Xu Y (2002) An efficient branch-and-bound algorithm for the assignment of protein backbone NMR peaks. Proc IEEE Comput Soc Bioinform Conf 1:165–174

    Google Scholar 

  • Lin HN, Wu KP, Chang JM, Sung TY, Hsu WL (2005) GANA—a genetic algorithm for NMR backbone resonance assignment. Nucleic Acids Res 33:4593–4601

    Article  Google Scholar 

  • Lin G, Wan X, Tegos T, Li Y (2006) Statistical evaluation of NMR backbone resonance assignment. Int J Bioinform Res Appl 2:147–160

    Google Scholar 

  • Lukin JA, Gove AP, Talukdar SN, Ho C (1997) Automated probabilistic method for assigning backbone resonances of (13C, 15N)-labeled proteins. J Biomol NMR 9:151–166

    Article  Google Scholar 

  • Marion D (2005) Fast acquisition of NMR spectra using Fourier transform of non-equispaced data. J Biomol NMR 32:141–150

    Article  Google Scholar 

  • Masse JE, Keller R (2005) AutoLink: automated sequential resonance assignment of biopolymers from NMR data by relative-hypothesis-prioritization-based simulated logic. J Magn Reson 174:133–151

    Article  ADS  Google Scholar 

  • Monleon D, Colson K, Moseley HN, Anklin C, Oswald R, Szyperski T, Montelione GT (2002) Rapid analysis of protein backbone resonance assignments using cryogenic probes, a distributed Linux-based computing architecture, and an integrated set of spectral analysis tools. J Struct Funct Genomics 2:93–101

    Article  Google Scholar 

  • Olson JB Jr, Markley JL (1994) Evaluation of an algorithm for the automated sequential assignment of protein backbone resonances: a demonstration of the connectivity tracing assignment tools (CONTRAST) software package. J Biomol NMR 4:385–410

    Article  Google Scholar 

  • Orekhov VY, Ibraghimov IV, Billeter M (2001) MUNIN: a new approach to multi-dimensional NMR spectra interpretation. J Biomol NMR 20:49–60

    Article  Google Scholar 

  • Orekhov VY, Ibraghimov I, Billeter M (2003) Optimizing resolution in multidimensional NMR by three-way decomposition. J Biomol NMR 27:165–173

    Article  Google Scholar 

  • Pantoja-Uceda D, Santoro J (2008) Amino acid type identification in NMR spectra of proteins via beta- and gamma-carbon edited experiments. J Magn Reson 195:187–195

    Article  ADS  Google Scholar 

  • Pervushin K, Vogeli B, Eletsky A (2002) Longitudinal (1)H relaxation optimization in TROSY NMR spectroscopy. J Am Chem Soc 124:12898–12902

    Article  Google Scholar 

  • Ribeiro EA Jr, Favier A, Gerard FC, Leyrat C, Brutscher B, Blondel D, Ruigrok RW, Blackledge M, Jamin M (2008) Solution structure of the C-terminal nucleoprotein-RNA binding domain of the vesicular stomatitis virus phosphoprotein. J Mol Biol 382:525–538

    Article  Google Scholar 

  • Rovnyak D, Frueh DP, Sastry M, Sun ZY, Stern AS, Hoch JC, Wagner G (2004) Accelerated acquisition of high resolution triple-resonance spectra using non-uniform sampling and maximum entropy reconstruction. J Magn Reson 170:15–21

    Article  ADS  Google Scholar 

  • Schanda P, Van Melckebeke H, Brutscher B (2006) Speeding up three-dimensional protein NMR experiments to a few minutes. J Am Chem Soc 128:9042–9043

    Article  Google Scholar 

  • Slupsky CM, Boyko RF, Booth VK, Sykes BD (2003) Smartnotebook: a semi-automated approach to protein sequential NMR resonance assignments. J Biomol NMR 27:313–321

    Article  Google Scholar 

  • Vitek O, Vitek J, Craig B, Bailey-Kellogg C (2004) Model-based assignment and inference of protein backbone nuclear magnetic resonances. Stat Appl Genet Mol Biol 3:6

    MathSciNet  Google Scholar 

  • Vitek O, Bailey-Kellogg C, Craig B, Kuliniewicz P, Vitek J (2005) Reconsidering complete search algorithms for protein backbone NMR assignment. Bioinformatics 21(Suppl 2):230–236

    Google Scholar 

  • Vitek O, Bailey-Kellogg C, Craig B, Vitek J (2006) Inferential backbone assignment for sparse data. J Biomol NMR 35:187–208

    Article  Google Scholar 

  • Volk J, Herrmann T, Wuthrich K (2008) Automated sequence-specific protein NMR assignment using the memetic algorithm MATCH. J Biomol NMR 41:127–138

    Article  Google Scholar 

  • Wan X, Lin G (2006) A graph-based automated NMR backbone resonance sequential assignment. Comput Syst Bioinformatics Conf 5:5–66

    Google Scholar 

  • Wan X, Lin G (2007) GASA: a graph-based automated NMR backbone resonance sequential assignment program. J Bioinform Comput Biol 5:313–333

    Article  Google Scholar 

  • Wu KP, Chang JM, Chen JB, Chang CF, Wu WJ, Huang TH, Sung TY, Hsu WL (2006) RIBRA—an error-tolerant algorithm for the NMR backbone assignment problem. J Comput Biol 13:229–244

    Article  MathSciNet  Google Scholar 

  • Zimmerman DE, Kulikowski CA, Huang Y, Feng W, Tashiro M, Shimotakahara S, Chien C, Powers R, Montelione GT (1997) Automated analysis of protein NMR assignments using methods from artificial intelligence. J Mol Biol 269:592–610

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Commissariat à l’Energie Atomique, the Centre National de la Recherche Scientifique, the University Grenoble 1, the French Research Agency (ANR-JCJC-05-0077), and the European commission (I3, EU-NMR, Contract No. 026145). We thank I. Ayala for preparation of the ubiquitin sample, P. Gans for the calmodulin sample, and B. Bersch, K.-M. Derfoufi, G. Vandenbussche, R. Rasia, J. Boisbouvier, and M. Jamin, for making samples of HMR, Hyl1 and VSV-PCTD available for this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ewen Lescop or Bernhard Brutscher.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 600 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lescop, E., Brutscher, B. Highly automated protein backbone resonance assignment within a few hours: the «BATCH» strategy and software package. J Biomol NMR 44, 43–57 (2009). https://doi.org/10.1007/s10858-009-9314-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-009-9314-2

Keywords

Navigation