Skip to main content
Log in

Ferroelectric polarization tuning the photovoltaic and diode-like effect of the Ni, Sm co-doped BiFeO3 film capacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Although BiFeO3-based photovoltaic devices have currently attracted much attention due to their unique physical properties, their practical applications have been limited by the complex and obscure intrinsic physical mechanisms. This paper reported the synthesis of the Ni, Sm co-doped BiFeO3 film capacitors by a spin-coating technology. The results and analysis showed that co-doped BiFeO3 films exhibited low leakage current and well saturated ferroelectric hysteresis loops. Especially, the photovoltaic effect and diode-like effect of ferroelectric film capacitors could be efficiently modulated by the external polarization. The complex intrinsic physical mechanism of photovoltaic effect and diode-like effect under polarization modulation was studied and explained clearly by the energy-band diagram and the theory of ferroelectric polarization. Moreover, the effect of inherent and external factors on photovoltaic output of BiFeO3 films was jointly analyzed by the ferroelectric polarization and photovoltaic mechanism. This theoretical exploration may facilitate to improve the understanding of the photovoltaic effect in ferroelectrics, which will be likely to have the opportunity to advance the design of switchable devices that combine ferroelectric and photovoltaics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Nechache, C. Harnagea, S. Li, L. Cardenas, W. Huang, J. Chakrabartty, F. Rosei, Nat. Photonics 9, 61 (2014)

    Article  Google Scholar 

  2. Z. Gao, X. Huang, P. Li, L. Wang, L. Wei, W. Zhang, H. Guo, Adv. Mater. Interfaces 5, 1701565 (2018)

    Article  Google Scholar 

  3. L. You, F. Zheng, L. Fang, Y. Zhou, L.Z. Tan, Z. Zhang, G. Ma, D. Schmidt, A. Rusydi, L. Wang, Sci. Adv. 4, 3438 (2018)

    Article  Google Scholar 

  4. H. Jang, D. Ortiz, S.H. Baek, C.M. Folkman, R.R. Das, P. Shafer, Y. Chen, C.T. Nelson, X. Pan, R. Ramesh, C.B. Eom, Adv. Mater. 21, 817 (2009)

    Article  CAS  Google Scholar 

  5. M.M. Yang, M. Alexe, Adv. Mater. 30, 1704908 (2018)

    Article  Google Scholar 

  6. Y. Yuan, Z. Xiao, B. Yang, J. Huang, J. Mater. Chem. A 2, 6027 (2014)

    Article  CAS  Google Scholar 

  7. H. Huang, Nat. Photonics 4, 134 (2010)

    Article  CAS  Google Scholar 

  8. X. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L. MacManus-Driscoll, Appl. Phys. Lett. 86, 062903 (2005)

    Article  Google Scholar 

  9. J.H. Zhong, A.L. Wang, G.R. Li, J.W. Wang, Y.N. Ou, Y.X. Tong, J. Mater. Chem. 22, 5656 (2012)

    Article  CAS  Google Scholar 

  10. A.M. Glass, D. Linde, D.H. Auston, T.J. Negran, J. Electron. Mater. 4, 915–943 (1975)

    Article  CAS  Google Scholar 

  11. J.P. Singh, G. Dixit, R.C. Srivastava, H.M. Agrawal, K. Asokan, J. Phys. D Appl. Phys. 44, 435306 (2011)

    Article  Google Scholar 

  12. A. Mukherjee, S. Basu, P.K. Manna, S.M. Yusuf, M. Pal, J. Mater. Chem. C 2, 5885 (2014)

    Article  CAS  Google Scholar 

  13. S. Chatterjee, A. Bera, A.J. Pal, A.C.S. Appl, Mater. Interfaces 6, 20479 (2014)

    Article  CAS  Google Scholar 

  14. M. Zhu, H. Zheng, J. Zhang, G. Yuan, K. Wang, G. Yue, F. Li, Y. Chen, M. Wu, W. Zhang, Appl. Phys. Lett. 111, 032901 (2017)

    Article  Google Scholar 

  15. R. Guo, L. You, Y. Zhou, Z.S. Lim, X. Zou, L. Chen, R. Ramesh, J. Wang, Nat. Commun. 4, 1990 (2013)

    Article  Google Scholar 

  16. I. Grinberg, D.V. West, M. Torres, G. Gou, D.M. Stein, L. Wu, G. Chen, E.M. Gallo, A.R. Akbashev, P.K. Davies, J.E. Spanier, A.M. Rappe, Nature 503, 509 (2013)

    Article  CAS  Google Scholar 

  17. T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin, S.W. Cheong, Science 324, 63–66 (2009)

    Article  CAS  Google Scholar 

  18. T. Yang, J. Wei, Z. Lv, Y. Guo, Z. Xu, J. Sol-Gel. Sci. Technol. 88, 618 (2018)

    Article  CAS  Google Scholar 

  19. J. Wei, Y. Liu, X. Bai, C. Li, Y. Liu, Z. Xu, P. Gemeiner, R. Haumont, I.C. Infante, B. Dkhil, Ceram. Int. 42, 13395 (2016)

    Article  CAS  Google Scholar 

  20. Y. Liu, J. Wei, Y. Guo, T. Yang, Z. Xu, RSC Adv. 6, 96563 (2016)

    Article  CAS  Google Scholar 

  21. J. Dho, X. Qi, H. Kim, J.L. MacManus-Driscoll, M.G. Blamire, Adv. Mater. 18, 1445 (2006)

    Article  CAS  Google Scholar 

  22. S. Kazunori, K.Y. Hiroshi, Japan. J. Appl. Phys. 40, 334 (2001)

    Article  Google Scholar 

  23. Y. Wang, G. Xu, L. Yang, Z. Ren, X. Wei, W. Weng, Mater. Sci. 27, 219–224 (2009)

    CAS  Google Scholar 

  24. C. Wang, K. Jin, Z. Xu, L. Wang, C. Ge, H. Lu, H. Guo, M. He, G. Yang, Appl. Phys. Lett. 98, 192901 (2011)

    Article  Google Scholar 

  25. H. Matsuo, Y. Kitanaka, R. Inoue, Y. Noguchi, M. Miyayama, Appl. Phys. Lett. 108, 032901 (2016)

    Article  Google Scholar 

  26. D.J. Kim, M. Alexe, Appl. Phys. Lett. 110, 183902 (2017)

    Article  Google Scholar 

  27. P.P. Biswas, T. Chinthakuntla, D. Duraisamy, G.N. Venkatesan, S. Venkatachalam, P. Murugavel, Appl. Phys. Lett. 110, 192906 (2017)

    Article  Google Scholar 

  28. H. Wang, Y. Zheng, M. Cai, H. Huang, H. Chan, Solid State Commun. 149, 641–644 (2009)

    Article  CAS  Google Scholar 

  29. F. Zheng, Y. Xin, W. Huang, J. Zhang, X. Wang, M. Shen, W. Dong, L. Fang, Y. Bai, X. Shen, J. Hao, J. Mater. Chem. A 2, 1363 (2014)

    Article  CAS  Google Scholar 

  30. B. Chen, M. Li, Y. Liu, Z. Zuo, F. Zhuge, Q.F. Zhan, R.W. Li, Nanotechnology 22, 195201 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support by the National Natural Science Foundation of China (Grant NO. 51272204) is gratefully acknowledged. The authors also thank Ms. Dai and Mr. Ma for their help in using FE-SEM at International Center for Dielectric Research (ICDR), Xi’an Jiaotong University, China.

Author information

Authors and Affiliations

Authors

Contributions

TT Yang conceived and carried out the experiments. TT Yang and J Wei analyzed the data, and wrote the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jie Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Wei, J., Lv, Z. et al. Ferroelectric polarization tuning the photovoltaic and diode-like effect of the Ni, Sm co-doped BiFeO3 film capacitors. J Mater Sci: Mater Electron 30, 12163–12169 (2019). https://doi.org/10.1007/s10854-019-01574-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01574-9

Navigation