Skip to main content
Log in

Ion dopants tuning the interband electronic structure for huge saturated ferroelectric polarization in bismuth ferrite films

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Bismuth ferrite (BiFeO3, BFO) as a prototype multiferroic has been extensively studied in past years; however, there are several key issues not to be clearly expressed. Especially, the relationship of structure and physical properties still remains obscure. In this case, the interband electronic structure of BFO was elaborately manipulated by appropriation dopants of Ni and Gd to realize the huge saturated ferroelectric polarization in the polycrystalline films. For instance, a huge saturated polarization PS of 96 μC/cm2 and remnant polarization Pr of 91 μC/cm2 were achieved in Bi0.925Gd0.075Fe0.95Ni0.05O3 film. The results and analysis show that the alteration in the interband electronic structure and the improvement of morphology derived from the ion doping effect indeed play key roles on the improved ferroelectric property of the doped BFO films. The decreased leakage current density and thereby the enhanced ferroelectric polarization in the doped BFO films should be attributed to the decrease in both Fermi level and Urbach energy closely related with the defects, as well as the improved surface uniformity and compactness of the films. Finally, the mechanism and relationship of structure and physical properties in BFO were systemically analyzed and discussed.

The ferroelectric polarization for pure and doped BiFeO3 films

Highlights

  • The interband electronic structure of BiFeO3 was elaborately manipulated by appropriation dopants to realize the huge saturated polarization in the polycrystalline films.

  • A huge saturated polarization PS of 96 μC/cm2 was achieved in Bi0.925Gd0.075Fe0.95Ni0.05O3 film.

  • The mechanism and relationship of electronic structure and physical properties in BiFeO3 were systemically analyzed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Choi J, Kim S, Park CH, Kwack JH, Park CH, Hwang H, Im H-S, Park YW, Ju B-K (2018) Light extraction enhancement in flexible organic light-emitting diodes by a light-scattering layer of dewetted Ag nanoparticles at low temperatures. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.8b07026

    Article  CAS  Google Scholar 

  2. Glass AM, von der Linde D, Negran TJ (1974) High‐voltage bulk photovoltaic effect and the photorefractive process in LiNbO3. Appl Phys Lett 25(4):233–235. https://doi.org/10.1063/1.1655453

    Article  CAS  Google Scholar 

  3. Bian L, Xu J-b, Song M-x, Dong F-q, Dong H-l, Shi F-N, Zhang X-Y, Duan T (2015) First principles simulation of temperature dependent electronic transition of FM-AFM phase BFO. J Mol Model 21(4):91. https://doi.org/10.1007/s00894-015-2583-7

    Article  CAS  Google Scholar 

  4. Glass AM, von der Linde D, Auston DH, Negran TJ (1975) Excited state polarization, bulk photovoltaic effect and the photorefractive effect in electrically polarized media. J Electron Mater 4(5):915–943. https://doi.org/10.1007/bf02660180

    Article  CAS  Google Scholar 

  5. Jo S-H, Lee S-G, Lee Y-H (2012) Ferroelectric properties of PZT/BFO multilayer thin films prepared using the sol-gel method. Nanoscale Res Lett 7(1):54. https://doi.org/10.1186/1556-276x-7-54

    Article  Google Scholar 

  6. Xie J, Guo C, Yang P, Wang X, Liu D, Li CM (2017) Bi-functional ferroelectric BiFeO3 passivated BiVO4 photoanode for efficient and stable solar water oxidation. Nano Energy 31:28–36. https://doi.org/10.1016/j.nanoen.2016.10.048

    Article  CAS  Google Scholar 

  7. Arizmendi L (2004) Photonic applications of lithium niobate crystals. Phys Status Solidi (a) 201(2):253–283. https://doi.org/10.1002/pssa.200303911

    Article  Google Scholar 

  8. Hu GD, Cheng X, Wu WB, Yang CH (2007) Effects of Gd substitution on structure and ferroelectric properties of BiFeO3 thin films prepared using metal organic decomposition. Appl Phys Lett 91(23):232909. https://doi.org/10.1063/1.2822826

    Article  CAS  Google Scholar 

  9. Wang Y, Li J, Chen J, Deng Y (2013) Ba and Ti co-doped BiFeO3 thin films via a modified chemical route with synchronous improvement in ferroelectric and magnetic behaviors. J Appl Phys 113(10):103904. https://doi.org/10.1063/1.4794814

    Article  CAS  Google Scholar 

  10. Qin W, Guo Y, Guo B, Gu M (2012) Dielectric and optical properties of BiFeO3–(Na0.5Bi0.5)TiO3 thin films deposited on Si substrate using LaNiO3 as buffer layer for photovoltaic devices. J Alloy Compd 513:154–158. https://doi.org/10.1016/j.jallcom.2011.10.011

    Article  CAS  Google Scholar 

  11. Yang CH, Seidel J, Kim SY, Rossen PB, Yu P, Gajek M, Chu YH, Martin LW, Holcomb MB, He Q, Maksymovych P, Balke N, Kalinin SV, Baddorf AP, Basu SR, Scullin ML, Ramesh R (2009) Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nat Mater 8(6):485–493. https://doi.org/10.1038/nmat2432

    Article  CAS  Google Scholar 

  12. Singh SK, Maruyama K, Ishiwara H (2007) Reduced leakage current in La and Ni codoped BiFeO3 thin films. Appl Phys Lett 91(11):112913. https://doi.org/10.1063/1.2784968

    Article  CAS  Google Scholar 

  13. Huang J-Z, Shen Y, Li M, Nan C-W (2011) Structural transitions and enhanced ferroelectricity in Ca and Mn co-doped BiFeO3 thin films. J Appl Phys 110(9):094106. https://doi.org/10.1063/1.3650460

    Article  CAS  Google Scholar 

  14. Deng X, Wang W, Gao R, Cai W, Chen G, Fu C (2018) Microstructure, enhanced piezoelectric, optical and magnetic properties of Mn substituted BiFeO3 film synthesized by chemical method. J Mater Sci: Mater Electron 29(8):6870–6878. https://doi.org/10.1007/s10854-018-8673-4

    Article  CAS  Google Scholar 

  15. Liu KT, Li J, Xu JB, Xu FL, Wang L, Bian L (2017) Study on dielectric, optic and magnetic properties of manganese and nickel co-doped bismuth ferrite thin film. J Mater Sci: Mater Electron 28(7):5609–5614. https://doi.org/10.1007/s10854-016-6229-z

    Article  CAS  Google Scholar 

  16. Choi T, Lee S, Choi YJ, Kiryukhin V, Cheong SW (2009) Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3. Science 324(5923):63–66. https://doi.org/10.1126/science.1168636

    Article  CAS  Google Scholar 

  17. Yan F, Zhu TJ, Lai MO, Lu L (2010) Enhanced multiferroic properties and domain structure of La-doped BiFeO3 thin films. Scr Mater 63(7):780–783. https://doi.org/10.1016/j.scriptamat.2010.06.013

    Article  CAS  Google Scholar 

  18. Pabst GW, Martin LW, Chu Y-H, Ramesh R (2007) Leakage mechanisms in BiFeO3 thin films. Appl Phys Lett 90(7):072902. https://doi.org/10.1063/1.2535663

    Article  CAS  Google Scholar 

  19. Yang H, Jain M, Suvorova NA, Zhou H, Luo HM, Feldmann DM, Dowden PC, DePaula RF, Foltyn SR, Jia QX (2007) Temperature-dependent leakage mechanisms of Pt/BiFeO3/SrRuO3 thin film capacitors. Appl Phys Lett 91(7):072911. https://doi.org/10.1063/1.2772666

    Article  CAS  Google Scholar 

  20. Kawae T, Terauchi Y, Tsuda H, Kumeda M, Morimoto A (2009) Improved leakage and ferroelectric properties of Mn and Ti codoped BiFeO3 thin films. Appl Phys Lett 94(11):112904. https://doi.org/10.1063/1.3098408

    Article  CAS  Google Scholar 

  21. Singh MK, Jang HM, Ryu S, Jo M-H (2006) Polarized Raman scattering of multiferroic BiFeO3 epitaxial films with rhombohedral R3c symmetry. Appl Phys Lett 88(4):042907. https://doi.org/10.1063/1.2168038

    Article  CAS  Google Scholar 

  22. Liu Y, Wei J, Guo Y, Yang T, Xu Z (2016) Phase transition, interband electronic transitions and enhanced ferroelectric properties in Mn and Sm co-doped bismuth ferrite films. RSC Adv 6(99):96563–96572. https://doi.org/10.1039/c6ra20740e

    Article  CAS  Google Scholar 

  23. Singh MK, Ryu S, Jang HM (2005) Polarized Raman scattering of multiferroicBiFeO3 thin films with pseudo-tetragonal symmetry. Phys Rev B 72 (13). https://doi.org/10.1103/PhysRevB.72.132101

  24. Yang Y, Sun JY, Zhu K, Liu YL, Wan L (2008) Structure properties of BiFeO3 films studied by micro-Raman scattering. J Appl Phys 103(9):093532. https://doi.org/10.1063/1.2913198

    Article  CAS  Google Scholar 

  25. Wei J, Liu Y, Bai X, Li C, Liu Y, Xu Z, Gemeiner P, Haumont R, Infante IC, Dkhil B (2016) Crystal structure, leakage conduction mechanism evolution and enhanced multiferroic properties in Y-doped BiFeO3 ceramics. Ceram Int 42(12):13395–13403. https://doi.org/10.1016/j.ceramint.2016.05.106

    Article  CAS  Google Scholar 

  26. Ji W, Yao K, Liang YC (2010) Bulk photovoltaic effect at visible wavelength in epitaxial ferroelectric BiFeO3 thin films. Adv Mater 22(15):1763–1766. https://doi.org/10.1002/adma.200902985

    Article  CAS  Google Scholar 

  27. Lee D, Baek SH, Kim TH, Yoon JG, Folkman CM, Eom CB, Noh TW (2011) Polarity control of carrier injection at ferroelectric/metal interfaces for electrically switchable diode and photovoltaic effects. Phys Rev B 84 (12). https://doi.org/10.1103/PhysRevB.84.125305

  28. Howard IA, Mauer R, Meister M, Laquai F (2010) Effect of morphology on ultrafast free carrier generation in polythiophene:fullerene organic solar cells. J Am Chem Soc 132(42):14866–14876. https://doi.org/10.1021/ja105260d

    Article  CAS  Google Scholar 

  29. Cai W, Fu C, Gao R, Jiang W, Deng X, Chen G (2014) Photovoltaic enhancement based on improvement of ferroelectric property and band gap in Ti-doped bismuth ferrite thin films. J Alloy Compd 617:240–246. https://doi.org/10.1016/j.jallcom.2014.08.011

    Article  CAS  Google Scholar 

  30. Fang L, You L, Zhou Y, Ren P, Shiuh Lim Z, Wang J (2014) Switchable photovoltaic response from polarization modulated interfaces in BiFeO3 thin films. Appl Phys Lett 104(14):142903. https://doi.org/10.1063/1.4870972

    Article  CAS  Google Scholar 

  31. Zhang N, Chen D, Niu F, Wang S, Qin L, Huang Y (2016) Enhanced visible light photocatalytic activity of Gd-doped BiFeO3 nanoparticles and mechanism insight. Sci Rep 6:26467. https://doi.org/10.1038/srep26467

    Article  CAS  Google Scholar 

  32. Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254(8):2441–2449. https://doi.org/10.1016/j.apsusc.2007.09.063

    Article  CAS  Google Scholar 

  33. Ramachandran B, Dixit A, Naik R, Lawes G, Rao MSR (2010) Charge transfer and electronic transitions in polycrystallineBiFeO3. Phys Rev B 82(1). https://doi.org/10.1103/PhysRevB.82.012102

  34. Qin M, Yao K, Liang YC (2008) High efficient photovoltaics in nanoscaled ferroelectric thin films. Appl Phys Lett 93(12):122904. https://doi.org/10.1063/1.2990754

    Article  CAS  Google Scholar 

  35. Bai X, Wei J, Tian B, Liu Y, Reiss T, Guiblin N, Gemeiner P, Dkhil B, Infante I C (2016) Size effect on optical and photocatalytic properties in BiFeO3 nanoparticles. J Phys Chem C 120(7):3595–3601. https://doi.org/10.1021/acs.jpcc.5b09945

    Article  CAS  Google Scholar 

  36. Clark SJ, Robertson J (2007) Band gap and Schottky barrier heights of multiferroic BiFeO3. Appl Phys Lett 90(13):132903. https://doi.org/10.1063/1.2716868

    Article  CAS  Google Scholar 

  37. Wei J, Wu C, Liu Y, Guo Y, Yang T, Wang D, Xu Z, Haumont R (2017) Structural distortion, spin-phonon coupling, interband electronic transition, and enhanced magnetization in rare-earth-substituted bismuth ferrite. Inorg Chem 56(15):8964–8974. https://doi.org/10.1021/acs.inorgchem.7b00914

    Article  CAS  Google Scholar 

  38. Jiang K, Zhu JJ, Wu JD, Sun J, Hu ZG, Chu JH (2011) Influences of oxygen pressure on optical properties and interband electronic transitions in multiferroic bismuth ferrite nanocrystalline films grown by pulsed laser deposition. ACS Appl Mater Interfaces 3(12):4844–4852. https://doi.org/10.1021/am201340d

    Article  CAS  Google Scholar 

  39. Simmons JG (1967) Poole-Frenkel effect and Schottky effect in metal-insulator-metal systems. Phys Rev 155(3):657. https://doi.org/10.1103/PhysRev.155.657

    Article  CAS  Google Scholar 

  40. Wang H, Zheng Y, Cai M-Q, Huang H, Chan HLW (2009) First-principles study on the electronic and optical properties of BiFeO3. Solid State Commun 149(15):641–644. https://doi.org/10.1016/j.ssc.2009.01.023

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the Key Research & Development Project of Shannxi Province (No. 2017GY-031) and National Natural Science Foundation of China (Grant No. 51272204) are gratefully acknowledged. The authors also thank Ms. Dai and Mr. Ma for their help in using FE-SEM at International Center for Dielectric Research (ICDR), Xi’an Jiaotong University, China.

Author contributions

TTY conceived and carried out the experiments. TTY and JW analyzed the data, and wrote the paper. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Wei, J., Lv, Z. et al. Ion dopants tuning the interband electronic structure for huge saturated ferroelectric polarization in bismuth ferrite films. J Sol-Gel Sci Technol 88, 618–627 (2018). https://doi.org/10.1007/s10971-018-4862-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4862-0

Keywords

Navigation