Skip to main content
Log in

Improved photomagnetoelectric properties of BiFeO3/CoFe2O4 films by using the size effect

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The potential applications of magnetoelectric composites in capacitors, sensors, memory electronic devices, and energy harvesting devices have aroused great interest due to their mutual coupling between ferroelectric and ferromagnetic phases. In this paper, BFO/CFO composite films were prepared by the sol–gel method, and the regulation of magneto-photoelectric and coupling properties of BFO/CFO films with different compositions was studied. The results show that with the increase of BFO composition, the interface between BFO layer and BFO layer also appears, the dielectric constant of the film decreases with increasing the content of BFO, and the photoelectric conversion efficiency of the film increases at first and then decreases with the increase of BFO content. When the composition is 4BFO/6CFO, the photoelectric conversion efficiency of the composite film is the highest, which is 2.02 × 10−3%. With the increase of CFO content, the remanent magnetization and saturation magnetization of the film increase gradually. However, when the compositions are 4BFO/6CFO and 3BFO/7CFO, their leakage current is high, resulting in the degradation of ferroelectric properties. The composition 5BFO/5CFO has the highest magnetodielectric and photo induced magnetodielectric response, the corresponding values are 2.21% and 3.88%, respectively. The magnetoelectric coupling coefficient of the film is greatly increased under the action of light, reaching 115%, which could plausibly relate to the photovoltaic effect and the photostriction effects of the film. These results may provide good guidance on designing new photoelectromagnetic detector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets and material generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. C. Chen, S.Q. Zhong, G.Y. Sun, Y.L. Zhang, Y.W. Ding, K.J. Ren, H. Li, R.L. Gao, X.L. Deng, W. Cai, Z.H. Wang, C.L. Fu, X. Lei, G. Chen, J. Mater. Sci. Mater. Electron. 34, 2041 (2023)

    Article  CAS  Google Scholar 

  2. H. Wu, H. Ao, W.C. Li, Z.X. Zeng, R.L. Gao, C.L. Fu, G. Chen, X.L. Deng, Z.H. Wang, X. Lei, W. Cai, Mater. Today Chem. 21, 100511 (2021)

    Article  CAS  Google Scholar 

  3. C.Y. Li, R.C. Xu, R.L. Gao, Z.H. Wang, G. Chen, X.L.G. Deng, W. Cai, C.L. Fu, Q.T. Li, Mater. Chem. Phys. 249, 123144 (2020)

    Article  CAS  Google Scholar 

  4. R.L. Gao, C.L. Fu, W. Cai, G. Chen, X.L. Deng, X.L. Cao, J. Electron. Mater. 46(4), 2373–2378 (2017)

    Article  CAS  Google Scholar 

  5. X.L. Deng, Z.X. Zeng, R.L. Gao, Z.H. Wang, G. Chen, W. Cai, C.L. Fu, J. Alloys Compd. 831(5), 1–9 (2020)

    Google Scholar 

  6. R.L. Gao, H.W. Yang, Y.S. Chen, J.R. Sun, Y.G. Zhao, B.G. Shen, Appl. Phys. Lett. 104, 031906 (2014)

    Article  Google Scholar 

  7. X.L. Deng, J.M. Huang, Y.Y. Sun, K.H. Liu, R.L. Gao, W. Cai, C.L. Fu, J. Alloys Compd. 684, 510–515 (2016)

    Article  CAS  Google Scholar 

  8. R.L. Gao, H.W. Yang, Y.S. Chen, J.R. Sun, Y.G. Zhao, B.G. Shen, EPL. 105, 37008 (2014)

    Article  Google Scholar 

  9. R.L. Gao, Y.S. Chen, J.R. Sun, Y.G. Zhao, J.B. Li, B.G. Shen, Appl. Phys. Lett. 101, 152901 (2012)

    Article  Google Scholar 

  10. R.L. Gao, Y.S. Chen, J.R. Sun, Y.G. Zhao, J.B. Li, B.G. Shen, J. Appl. Phys. 113, 183501 (2013)

    Article  Google Scholar 

  11. R.L. Gao, H.W. Yang, Y.S. Chen, J.R. Sun, Y.G. Zhao, B.G. Shen, J. Alloys Comp. 591, 346 (2014)

    Article  CAS  Google Scholar 

  12. Y. Liu, G. Tan, Z. Chai, L. Lv, Z. Yue, M. Xue, H. Ren, A. Xia, Ceram. Int. 45, 3522 (2019)

    Article  CAS  Google Scholar 

  13. X. Tang, J. Dai, X. Zhu, J. Lin, Q. Chang, D. Wu, W. Song, Y. Sun, J. Am. Ceram. Soc. 95, 538 (2012)

    Article  CAS  Google Scholar 

  14. D.P. Song, J. Yang, B. Yuan, X.Z. Zuo, X.W. Tang, L. Chen, W.H. Song, X.B. Zhu, Y.P. Sun, J. Appl. Phys. 117, 244105 (2015)

    Article  Google Scholar 

  15. J.J. Gu, L.H. Liu, Y.K. Yi, Magneto-electric coupling in composite thin films NiFe2O4–BiFeO3. J. J. Phys. 60, 691–696 (2011)

    Google Scholar 

  16. G. Biasotto, F. Moura, C. Foschini, E. Longo, J. Varela, A. Simões, PAC 5, 31 (2011)

    Article  CAS  Google Scholar 

  17. G. Kaur, A. Mitra, K.L. Yadav, Progress Natural Sci.: Mater. Int. 25, 12 (2015)

    Article  CAS  Google Scholar 

  18. G. Haas, R.E. Thun, J.G. Hoffman, Phys. Today. 21, 107 (1968)

    Article  Google Scholar 

  19. R.L. Gao, Q.M. Zhang, Z.Y. Xu, Z.H. Wang, G. Chen, X.L. Deng, C.L. Fu, W. Cai, Compos. Part B 166, 204–212 (2019)

    Article  CAS  Google Scholar 

  20. R. Gao, Q. Leng, Z. Wang, G. Chen, C. Fu, X. Deng, W. Cai, Mater. Res. Express. 6, 026308 (2018)

    Article  Google Scholar 

  21. X. Tang, J. Dai, X. Zhu, W. Song, Y. Sun, J. Alloys Compd. 509, 4748 (2011)

    Article  CAS  Google Scholar 

  22. N. Adhlakha, K.L. Yadav, M. Truccato, P. Manjusha, A. Rajak, Battiato, E. Vittone, Eur. Polymer J. 91, 100 (2017)

    Article  CAS  Google Scholar 

  23. A.K. Tagantsev, G. Gerra, J. Appl. Phys. 100, 051607 (2006)

    Article  Google Scholar 

  24. R. Meyer, R. Waser, J. Appl. Phys. 100, 051611 (2006)

    Article  Google Scholar 

  25. Y. Dai, Q. Gao, C. Cui, L. Yang, C. Li, X. Li, Mater. Res. Bull. 99, 424 (2018)

    Article  CAS  Google Scholar 

  26. M.M. Seyfouri, D. Wang, Crit. Rev. Solid State Mater. Sci. 46, 83 (2021)

    Article  CAS  Google Scholar 

  27. W. Cai, J. Gao, C. Fu, L. Tang, J. Alloys Compd. 487, 668 (2009)

    Article  CAS  Google Scholar 

  28. M. Ning, J. Li, C.K. Ong, S.J. Wang, J. Appl. Phys. 103, 013911 (2008)

    Article  Google Scholar 

  29. S. Sharma, M. Tomar, A. Kumar, N.K. Puri, V. Gupta, J. Phys. Chem. Solids. 93, 63 (2016)

    Article  CAS  Google Scholar 

  30. X. Yu, X. An, Solid State Commun. 149, 711 (2009)

    Article  CAS  Google Scholar 

  31. T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin, S.-W. Cheong, Science. 324, 63 (2009)

    Article  CAS  Google Scholar 

  32. K.R. Babu, R. Singh, J. Supercond Nov Magn. 31, 4029 (2018)

    Article  CAS  Google Scholar 

  33. E. Abroushan, S. Farhadi, A. Zabardasti, RSC Adv. 7, 18293 (2017)

    Article  CAS  Google Scholar 

  34. Y. Yuan, Z. Xiao, B. Yang, J. Huang, J. Mater. Chem. A 2, 6027 (2014)

    Article  CAS  Google Scholar 

  35. W. Ji, K. Yao, Y.C. Liang, Phys. Rev. B 84, 094115 (2011)

    Article  Google Scholar 

  36. M. Qin, K. Yao, Y.C. Liang, S. Shannigrahi, J. Appl. Phys. 101, 014104 (2007)

    Article  Google Scholar 

  37. S. Sharma, M. Tomar, V. Gupta, Vacuum. 158, 117 (2018)

    Article  CAS  Google Scholar 

  38. Y.Z. Xue, R.C. Xu, Z.H. Wang, R.L. Gao, C.Y. Li, G. Chen, X.L. Deng, W. Cai, C.L. Fu, J. Electron. Mater. 48(8), 4806–4817 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

The present work has been supported by the Chongqing Research Program of Basic Research and Frontier Technology (Grant Nos. cstc2021jcyj-msxmX0008, cstc2021jcyj-msxmX0039, cstc2021jcyj-msxmX0599), the Program for Creative Research Groups in University of Chongqing (Grant No. CXQT19031), the special project of Chongqing technology innovation and application development (Grant No. cstc2020jscx-msxmX0218), the Postgraduate technology innovation project of Chongqing (Grant No. CYS21501), and the Postgraduate technology innovation project of Chongqing University of Science & Technology (Grant Nos. YKJCX2120525, YKJCX2120510, YKJCX2120531, YKJCX2120201).

Author information

Authors and Affiliations

Authors

Contributions

YD: conceptualization, methodology, investigation, writing—original draft. ZZ: validation, formal analysis, visualization. KR: validation, formal analysis, writing–review and editing. XD, RG, GM: formal analysis, writing—review and editing. WC, CF: writing—review and editing. GC: resources, writing—review and editing, supervision, data curation. ZW: resources, writing—review and editing, supervision, data curation. XL: writing—review and editing.

Corresponding authors

Correspondence to Gang Meng or Rongli Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

No human and/or animal studies are involved. Manuscript is approved by all authors for publication.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Ren, K., Zeng, Z. et al. Improved photomagnetoelectric properties of BiFeO3/CoFe2O4 films by using the size effect. J Mater Sci: Mater Electron 35, 7 (2024). https://doi.org/10.1007/s10854-023-11759-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11759-y

Navigation