Skip to main content
Log in

Improved electrochemical performance of cathode material LiNi0.8Co0.1Mn0.1O2 by doping magnesium via co-precipitation method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nickel-rich cathode materials is becoming one of the most promising cathode materials for electronic cars and other electronic devices. It is mainly due to their high reversible capacity, high tap density and low cost. However, its inherent defects such as poor capacity retention and safety performance problems limit its rapid development. In this article, the Mg2+ has been doped into the crystal lattice homogeneously via co-precipitation method to enhance the poor cyclic and rate behavior of LiNi0.8Co0.1Mn0.1O2. The result of X-ray diffraction illustrates that the samples possess a layered α-NaFeO2 structure, and belong to R-3m space group. The content of cation mixing in the sample with Mg2+ dopants is much lower than that of pristine sample. the electrochemical features are evaluated by charge and discharge studies, CV and EIS. The initial capacity of NCMM811 sample is 197.06 mAh/g, and after cycling 100 times, the capacity retention still remains at 91.88%, while the capacity retention of pristine sample is only 80.85% at the same circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N. Atar, T. Eren, M. Yola, H. Gerengi, S. Wang, Ionics 21, 3185 (2015)

    Article  Google Scholar 

  2. T. Eren, N. Atar, M. Yola, H. Karimi-Maleh, A. Çolak, A. Olgun, Ionics 21, 2193 (2015)

    Article  Google Scholar 

  3. N. Atar, T. Eren, M. Yola, Thin Solid Films 590, 156 (2015)

    Article  Google Scholar 

  4. X. Xiong, Z. Wang, X. Yin, H. Guo, X. Li, Mater. Lett. 110, 4 (2013)

    Article  Google Scholar 

  5. C. Zhang, J. Qi, H. Zhao, Mater. Lett. 201, 1 (2017)

    Article  Google Scholar 

  6. S. Jan, S. Nurgul, X. Shi, H. Xia, H. Pang, Electrochim. Acta 149, 86 (2014)

    Article  Google Scholar 

  7. J. Kang, H. Pham, D. Kang, H. Park, S. Song, J. Alloy. Compd. 657, 464 (2016)

    Article  Google Scholar 

  8. X. Li, X. Xiong, Z. Wang, Q. Chen, Trans. Nonferr. Met. Soc. China 24, 4023 (2014)

    Article  Google Scholar 

  9. Y. Ding, D. Mu, B. Wu, R. Wang, Z. Zhao, F. Wu, Appl. Energy 195, 586 (2017)

    Article  Google Scholar 

  10. C. Pan, Y. Zhu, Y. Yang et al., Trans. Nonferr. Met. Soc. China 26, 1396 (2016)

    Article  Google Scholar 

  11. T. Li, X. Li, Z. Wang, H. Guo, J. Power Sources 342, 495 (2017)

    Article  Google Scholar 

  12. K. Liu, G. Yang, Y. Dong, T. Shi, L. Chen, J. Power Sources 281, 370 (2015)

    Article  Google Scholar 

  13. Z. Zhang, D. Chen, C. Chang, RSC Adv. 7, 51721 (2017)

    Article  Google Scholar 

  14. Z. Zheng, X. Guo, Y. Zhong, Electrochim. Acta 188, 336 (2016)

    Article  Google Scholar 

  15. H. Liu, Y. Ding, B. Yang, Z. Liu, Q. Liu, X. Zhang, Sens. Actuators B 271, 336 (2018)

    Article  Google Scholar 

  16. J. Lian, P. Liu, X. Li, Colloids Surf. A 565, 1 (2019)

    Article  Google Scholar 

  17. J. Wang, C. Du, C. Yan, Electrochim. Acta 174, 1185 (2015)

    Article  Google Scholar 

  18. Q. Qiu, X. Huang, Y. Chen, Y. Tan, W. Lv, Ceram. Int. 40, 10511 (2014)

    Article  Google Scholar 

  19. X. Liu, D. Li, H. Li, Electrochim. Acta 148, 26 (2014)

    Article  Google Scholar 

  20. P. Ilango, T. Subburaj, K. Prasanna, Y. Jo, C. Lee, Mater. Chem. Phys. 158, 45 (2015)

    Article  Google Scholar 

  21. S. Sun, N. Wan, Q. Wu, Solid State Ionics 278, 85 (2015)

    Article  Google Scholar 

  22. T. Liu, S. Zhao, K. Wang, L. Gou, C. Nan, Appl. Surf. Sci. 355, 1222 (2015)

    Article  Google Scholar 

  23. E. Zhao, X. Liu, Z. Hu, L. Sun, X. Xiao, J. Power Sources 294, 141 (2015)

    Article  Google Scholar 

  24. Y. Huang, F. Jin, F. Chen, L. Chen, J. Power Sources 256, 1 (2014)

    Article  Google Scholar 

  25. H. Liu, Y. Ding, B. Yang, Z. Liu, X. Zhang, Q. Liu, ACS Sustain. Chem. Eng. 6, 14383 (2018)

    Article  Google Scholar 

  26. Y. Ding, H. Liu, L. Gao, J. Alloy. Compd. 785, 1189 (2019)

    Article  Google Scholar 

  27. P. Yue, Z. Wang, X. Li, Electrochim. Acta 95, 112 (2013)

    Article  Google Scholar 

  28. S. Liu, Z. Dang, D. Liu, C. Zhang, T. Huang, A. Yu, J. Power Sources 396, 288 (2018)

    Article  Google Scholar 

  29. Y. Zhang, Z. Wang, J. Lei, Ceram. Int. 41, 9069 (2015)

    Article  Google Scholar 

  30. M. Chen, E. Zhao, D. Chen, Inorg. Chem. 56, 14 (2017)

    Google Scholar 

  31. S. Do, P. Santhoshkumar, S. Kang, K. Prasanna, Y. Jo, C. Lee, Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2018.12.196

    Google Scholar 

  32. X. Cui, L. Ai, L. Mao, Ionics 25, 411 (2019)

    Article  Google Scholar 

  33. Y. Gao, K. Wu, H. Li, Sens. Actuators B 273, 1635 (2018)

    Article  Google Scholar 

  34. L. Liang, G. Hu, Y. Cao, J. Alloy. Compd. 635, 92 (2015)

    Article  Google Scholar 

  35. Z. Qiu, Y. Zhang, P. Dong, S. Xia, Y. Yao, Solid State Ionics 307, 73 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51834004, 51774076 and 51704063); the Fundamental Research Funds for the Central Universities (No. N172507011) and the Natural Science Foundation of Shandong Province (ZR2018MB041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Li, Y., Yi, W. et al. Improved electrochemical performance of cathode material LiNi0.8Co0.1Mn0.1O2 by doping magnesium via co-precipitation method. J Mater Sci: Mater Electron 30, 7490–7496 (2019). https://doi.org/10.1007/s10854-019-01062-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01062-0

Navigation