Skip to main content
Log in

Photoluminescence activity of BaTiO3 nanocubes via facile hydrothermal synthesis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Free from scaling effect is highly desirable but yet challenging in lead-free BaTiO3 (denoted as BTO). In this work, we revisit the synthesis BTO nanocubes via hydrothermal route and provide an insight on the photoluminescence behavior of BTO nanocubes, whilst others focus on the reproducibility of BTO nanocubes. The crystallinity of the BTOs was enhanced when the as-synthesized powders underwent calcination at elevated temperatures (> 500 °C). A combination of X-ray diffraction (XRD) patterns and transmission electron microscopy (TEM) images affirms that the BTO nanostructures evolved from cubic to tetragonal and changing from pseudo-ellipsoid to nanocube with {100} sharp facets. The tunable optical band gaps (3.18–2.74 eV), Urbach tails in UV–Vis absorption spectra and the enhanced intensity of photoluminescence at violet wavelength (433.7 nm) indicate the presence of localized state. In order to sort out the origin of the localized state, either stems from structural disorder or surface state, time-resolved photoluminescence was carried out. The long decay of the time-resolved photoluminescence (> 100 ns) proves the dominant involvement of self-trapped states. This in turn narrows the band gap, thus facilitates photoluminescence excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.A. Harrington, J. Zhai, S. Denev, V. Gopalan, H. Wang, Z. Bi, S.A. Redfern, S.-H. Baek, C.W. Bark, C.-B. Eom, Thick lead-free ferroelectric films with high Curie temperatures through nanocomposite-induced strain. Nat. Nanotechnol. 6(8), 491 (2011)

    Article  CAS  Google Scholar 

  2. D. Popovici, M. Okuyama, J. Akedo (2011) Barium titanate-based materials—a window of application opportunities, Ferroelectrics-Material Aspects, by Mickaël Lallart, IntechOpen, London: 279–304

  3. M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. Rossetti Jr., J. Rödel, BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl. Phys. Rev. 4(4), 041305 (2017)

    Article  CAS  Google Scholar 

  4. O. Lee, A. Kursumovic, Z. Bi, C.F. Tsai, H. Wang, J.L. MacManus-Driscoll, Giant enhancement of polarization and strong improvement of retention in epitaxial Ba0.6Sr0.4TiO3-based nanocomposites. Adv. Mater. Interfaces 4(15), 1700336 (2017)

    Article  CAS  Google Scholar 

  5. K. Song, N. Ma, Y.K. Mishra, R. Adelung, Y. Yang, Achieving light-induced ultrahigh pyroelectric charge density toward self-powered UV light detection. Adv. Electron. Mater. 5(1), 1800413 (2018)

    Article  CAS  Google Scholar 

  6. J. Varghese, R.W. Whatmore, J.D. Holmes, Ferroelectric nanoparticles, wires and tubes: synthesis, characterisation and applications. J. Mater. Chem. C 1(15), 2618–2638 (2013)

    Article  CAS  Google Scholar 

  7. J.E. Spanier, A.M. Kolpak, J.J. Urban, I. Grinberg, L. Ouyang, W.S. Yun, A.M. Rappe, H. Park, Ferroelectric phase transition in individual single-crystalline BaTiO3 nanowires. Nano Lett. 6(4), 735–739 (2006)

    Article  CAS  Google Scholar 

  8. L.M. Wang, X.Y. Deng, H.T. Zhang, J.B. Li, D. Chen, R.K. Chen, G.Q. Zhang, K.F. Su, C.P. Wang, Effect of grain size on phase transitions and dielectric properties of nano-crystalline barium titanate ceramics. Adv. Mater. Res. 602–604, 192–196 (2013)

    Google Scholar 

  9. F. Dang, K. Mimura, K. Kato, H. Imai, S. Wada, H. Haneda, M. Kuwabara, In situ growth BaTiO3 nanocubes and their superlattice from an aqueous process. Nanoscale 4(4), 1344–1349 (2012)

    Article  CAS  Google Scholar 

  10. D. Chu, X. Lin, A. Younis, C.M. Li, F. Dang, S. Li, Growth and self-assembly of BaTiO3 nanocubes for resistive switching memory cells. J. Solid State Chem. 214, 38–41 (2014)

    Article  CAS  Google Scholar 

  11. Q. Ma, K. Mimura, K. Kato, Tuning shape of barium titanate nanocubes by combination of oleic acid/tert-butylamine through hydrothermal process. J. Alloy. Compd. 655, 71–78 (2016)

    Article  CAS  Google Scholar 

  12. K. Mimura, K. Kato, H. Imai, S. Wada, H. Haneda, M. Kuwabara, Piezoresponse properties of orderly assemblies of BaTiO3 and SrTiO3 nanocube single crystals. Appl. Phys. Lett. 101(1), 012901 (2012)

    Article  CAS  Google Scholar 

  13. K. Mimura, K. Kato, Enhanced dielectric properties of BaTiO3 nanocube assembled film in metal–insulator–metal capacitor structure. Appl. Phys. Express 7(6), 061501 (2014)

    Article  CAS  Google Scholar 

  14. M. Moreira, G. Mambrini, D. Volanti, E. Leite, M. Orlandi, P. Pizani, V.R. Mastelaro, C. Paiva-Santos, E. Longo, J.A. Varela, Hydrothermal microwave: a new route to obtain photoluminescent crystalline BaTiO3 nanoparticles. Chem. Mater. 20(16), 5381–5387 (2008)

    Article  CAS  Google Scholar 

  15. Q. Sun, Q. Gu, K. Zhu, R. Jin, J. Liu, J. Wang, J. Qiu, Crystalline structure, defect chemistry and room temperature colossal permittivity of Nd-doped barium titanate. Sci. Rep. 7, 42274 (2017)

    Article  CAS  Google Scholar 

  16. S. Requena, S. Lacoul, Y.M. Strzhemechny, Luminescent properties of surface functionalized BaTiO3 embedded in Poly(methyl methacrylate). Materials 7(1), 471–483 (2014)

    Article  CAS  Google Scholar 

  17. H. Li, S. Huang, W. Zhang, W. Pan, Visible photoluminescence from amorphous barium titanate nanofibers. J. Alloy. Compd. 551, 131–135 (2013)

    Article  CAS  Google Scholar 

  18. S. Lu, Z. Xu, H. Chen, C. Mak, K. Wong, K. Li, K. Cheah, Time-resolved photoluminescence of barium titanate ultrafine powders. J. Appl. Phys. 99(6), 064103 (2006)

    Article  CAS  Google Scholar 

  19. M. Moreira, M. Gurgel, G. Mambrini, E. Leite, P. Pizani, J.A. Varela, E. Longo, Photoluminescence of barium titanate and barium zirconate in multilayer disordered thin films at room temperature. J. Phys. Chem. A 112(38), 8938–8942 (2008)

    Article  CAS  Google Scholar 

  20. R. Eglitis, V. Trepakov, S. Kapphan, G. Borstel, Quantum chemical modelling of ‘green’ luminescence in self activated perovskite-type oxides. Solid State Commun. 126(5), 301–304 (2003)

    Article  CAS  Google Scholar 

  21. F. Pontes, C. Pinheiro, E. Longo, E. Leite, S. De Lazaro, R. Magnani, P. Pizani, T. Boschi, F. Lanciotti, Theoretical and experimental study on the photoluminescence in BaTiO3 amorphous thin films prepared by the chemical route. J. Lumin. 104(3), 175–185 (2003)

    Article  CAS  Google Scholar 

  22. H. Zhan, X. Jiang, M. Zhu, X. Li, Z. Luo, K. Shu, Photoluminescence activity of BaTiO3 nanocrystals dependence on the structural evolution. J. Cryst. Growth 433, 80–85 (2016)

    Article  CAS  Google Scholar 

  23. K.W. Lee, J.-W. Yoon, Intense visible photoluminescence of Mn-doped BaTiO3 nanofibers depended on disordered structure. J. Ceram. Process. Res. 17(10), 1111–1115 (2016)

    Google Scholar 

  24. K.W. Lee, K. Siva Kumar, G. Heo, M.J. Seong, J.W. Yoon, Characterization of hollow BaTiO3 nanofibers and intense visible photoluminescence. J. Appl. Phys. 114(13), 134303 (2013)

    Article  CAS  Google Scholar 

  25. W. Zhang, Z. Yin, M. Zhang, Z. Du, W. Chen, Roles of defects and grain sizes in photoluminescence of nanocrystalline SrTiO3. J. Phys.: Condens. Matter. 11(29), 5655 (1999)

    CAS  Google Scholar 

  26. P. Pizani, E. Leite, F. Pontes, E. Paris, J. Rangel, E. Lee, E. Longo, P. Delega, J.A. Varela, Photoluminescence of disordered ABO3 perovskites. Appl. Phys. Lett. 77(6), 824–826 (2000)

    Article  CAS  Google Scholar 

  27. E. Korkmaz, N.O. Kalaycioglu, Synthesis and luminescence properties of BaTiO3:RE (RE = Gd3+, Dy3+, Tb3+, Lu3+) phosphors. Bull. Mater. Sci. 35(6), 1011–1017 (2012)

    Article  CAS  Google Scholar 

  28. D.-Y. Lu, D.-X. Guan, Photoluminescence associated with the site occupations of Ho3+ ions in BaTiO3. Sci. Rep. 7(1), 6125 (2017)

    Article  CAS  Google Scholar 

  29. J. Hao, Y. Zhang, X. Wei, Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3: Yb/Er thin films. Angew. Chem. 123(30), 7008–7012 (2011)

    Article  Google Scholar 

  30. H.L. Sun, X. Wu, T.H. Chung, K. Kwok, In-situ electric field-induced modulation of photoluminescence in Pr-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free ceramics. Sci. Rep. 6, 28677 (2016)

    Article  CAS  Google Scholar 

  31. H. Zou, D. Peng, G. Wu, X. Wang, D. Bao, J. Li, Y. Li, X. Yao, Polarization-induced enhancement of photoluminescence in Pr3+ doped ferroelectric diphase BaTiO3–CaTiO3 ceramics. J. Appl. Phys. 114(7), 073103 (2013)

    Article  CAS  Google Scholar 

  32. M. Vara, M. Chi, Y. Xia, Facile synthesis of BaTiO3 nanocubes with the use of anatase TiO2 nanorods as a precursor to titanium hydroxide. ChemNanoMat 2(9), 873–878 (2016)

    Article  CAS  Google Scholar 

  33. A. Thanki, R. Goyal, Study on effect of cubic-and tetragonal phased BaTiO3 on the electrical and thermal properties of polymeric nanocomposites. Mater. Chem. Phys. 183, 447–456 (2016)

    Article  CAS  Google Scholar 

  34. M.B. Smith, K. Page, T. Siegrist, P.L. Redmond, E.C. Walter, R. Seshadri, L.E. Brus, M.L. Steigerwald, Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale BaTiO3. J. Am. Chem. Soc. 130(22), 6955–6963 (2008)

    Article  CAS  Google Scholar 

  35. S. Sun, X. Zhang, Q. Yang, S. Liang, X. Zhang, Z. Yang, Cuprous oxide (Cu2O) crystals with tailored architectures: a comprehensive review on synthesis, fundamental properties, functional modifications and applications. Prog. Mater Sci. 96, 111–173 (2018)

    Article  CAS  Google Scholar 

  36. Q. Ma, K. Kato, Anisotropy in morphology and crystal structure of BaTiO3 nanoblocks. Mater. Des. 107, 378–385 (2016)

    Article  CAS  Google Scholar 

  37. X. Li, H. Zhu, J. Wei, K. Wang, E. Xu, Z. Li, D. Wu, Determination of band gaps of self-assembled carbon nanotube films using Tauc/Davis–Mott model. Appl. Phys. A 97(2), 341–344 (2009)

    Article  CAS  Google Scholar 

  38. A. Souza, G. Santos, B. Barra, W. Macedo Jr., S. Teixeira, C. Santos, A. Senos, L. Amaral, E. Longo, Photoluminescence of SrTiO3: influence of particle size and morphology. Cryst. Growth Des. 12(11), 5671–5679 (2012)

    Article  CAS  Google Scholar 

  39. E. Orhan, J.A. Varela, A. Zenatti, M. Gurgel, F. Pontes, E. Leite, E. Longo, P. Pizani, A. Beltran, J. Andres, Room-temperature photoluminescence of BaTiO3: joint experimental and theoretical study. Phys. Rev. B 71(8), 085113 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are gratefully for the financial support from the Ministry of Education Malaysia under the Research Acculturation Grant Scheme (RAGS) No.: 57113 and MyMaster scholarship. S. K. Chen would like to thank Universiti Putra Malaysia for supporting this work through the Putra Grant No.: GP-I/20179552300.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oon Jew Lee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasbullah, N.N., Chen, S.K., Tan, K.B. et al. Photoluminescence activity of BaTiO3 nanocubes via facile hydrothermal synthesis. J Mater Sci: Mater Electron 30, 5149–5157 (2019). https://doi.org/10.1007/s10854-019-00813-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00813-3

Navigation