Advertisement

Photoluminescence activity of BaTiO3 nanocubes via facile hydrothermal synthesis

  • Nurul Norfarina Hasbullah
  • Soo Kien Chen
  • Kar Ban Tan
  • Zainal Abidin Talib
  • Josephine Ying Chyi Liew
  • Oon Jew LeeEmail author
Article
  • 69 Downloads

Abstract

Free from scaling effect is highly desirable but yet challenging in lead-free BaTiO3 (denoted as BTO). In this work, we revisit the synthesis BTO nanocubes via hydrothermal route and provide an insight on the photoluminescence behavior of BTO nanocubes, whilst others focus on the reproducibility of BTO nanocubes. The crystallinity of the BTOs was enhanced when the as-synthesized powders underwent calcination at elevated temperatures (> 500 °C). A combination of X-ray diffraction (XRD) patterns and transmission electron microscopy (TEM) images affirms that the BTO nanostructures evolved from cubic to tetragonal and changing from pseudo-ellipsoid to nanocube with {100} sharp facets. The tunable optical band gaps (3.18–2.74 eV), Urbach tails in UV–Vis absorption spectra and the enhanced intensity of photoluminescence at violet wavelength (433.7 nm) indicate the presence of localized state. In order to sort out the origin of the localized state, either stems from structural disorder or surface state, time-resolved photoluminescence was carried out. The long decay of the time-resolved photoluminescence (> 100 ns) proves the dominant involvement of self-trapped states. This in turn narrows the band gap, thus facilitates photoluminescence excitation.

Notes

Acknowledgements

The authors are gratefully for the financial support from the Ministry of Education Malaysia under the Research Acculturation Grant Scheme (RAGS) No.: 57113 and MyMaster scholarship. S. K. Chen would like to thank Universiti Putra Malaysia for supporting this work through the Putra Grant No.: GP-I/20179552300.

References

  1. 1.
    S.A. Harrington, J. Zhai, S. Denev, V. Gopalan, H. Wang, Z. Bi, S.A. Redfern, S.-H. Baek, C.W. Bark, C.-B. Eom, Thick lead-free ferroelectric films with high Curie temperatures through nanocomposite-induced strain. Nat. Nanotechnol. 6(8), 491 (2011)Google Scholar
  2. 2.
    D. Popovici, M. Okuyama, J. Akedo (2011) Barium titanate-based materials—a window of application opportunities, Ferroelectrics-Material Aspects, by Mickaël Lallart, IntechOpen, London: 279–304Google Scholar
  3. 3.
    M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. Rossetti Jr., J. Rödel, BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl. Phys. Rev. 4(4), 041305 (2017)Google Scholar
  4. 4.
    O. Lee, A. Kursumovic, Z. Bi, C.F. Tsai, H. Wang, J.L. MacManus-Driscoll, Giant enhancement of polarization and strong improvement of retention in epitaxial Ba0.6Sr0.4TiO3-based nanocomposites. Adv. Mater. Interfaces 4(15), 1700336 (2017)Google Scholar
  5. 5.
    K. Song, N. Ma, Y.K. Mishra, R. Adelung, Y. Yang, Achieving light-induced ultrahigh pyroelectric charge density toward self-powered UV light detection. Adv. Electron. Mater. 5(1), 1800413 (2018)Google Scholar
  6. 6.
    J. Varghese, R.W. Whatmore, J.D. Holmes, Ferroelectric nanoparticles, wires and tubes: synthesis, characterisation and applications. J. Mater. Chem. C 1(15), 2618–2638 (2013)Google Scholar
  7. 7.
    J.E. Spanier, A.M. Kolpak, J.J. Urban, I. Grinberg, L. Ouyang, W.S. Yun, A.M. Rappe, H. Park, Ferroelectric phase transition in individual single-crystalline BaTiO3 nanowires. Nano Lett. 6(4), 735–739 (2006)Google Scholar
  8. 8.
    L.M. Wang, X.Y. Deng, H.T. Zhang, J.B. Li, D. Chen, R.K. Chen, G.Q. Zhang, K.F. Su, C.P. Wang, Effect of grain size on phase transitions and dielectric properties of nano-crystalline barium titanate ceramics. Adv. Mater. Res. 602–604, 192–196 (2013)Google Scholar
  9. 9.
    F. Dang, K. Mimura, K. Kato, H. Imai, S. Wada, H. Haneda, M. Kuwabara, In situ growth BaTiO3 nanocubes and their superlattice from an aqueous process. Nanoscale 4(4), 1344–1349 (2012)Google Scholar
  10. 10.
    D. Chu, X. Lin, A. Younis, C.M. Li, F. Dang, S. Li, Growth and self-assembly of BaTiO3 nanocubes for resistive switching memory cells. J. Solid State Chem. 214, 38–41 (2014)Google Scholar
  11. 11.
    Q. Ma, K. Mimura, K. Kato, Tuning shape of barium titanate nanocubes by combination of oleic acid/tert-butylamine through hydrothermal process. J. Alloy. Compd. 655, 71–78 (2016)Google Scholar
  12. 12.
    K. Mimura, K. Kato, H. Imai, S. Wada, H. Haneda, M. Kuwabara, Piezoresponse properties of orderly assemblies of BaTiO3 and SrTiO3 nanocube single crystals. Appl. Phys. Lett. 101(1), 012901 (2012)Google Scholar
  13. 13.
    K. Mimura, K. Kato, Enhanced dielectric properties of BaTiO3 nanocube assembled film in metal–insulator–metal capacitor structure. Appl. Phys. Express 7(6), 061501 (2014)Google Scholar
  14. 14.
    M. Moreira, G. Mambrini, D. Volanti, E. Leite, M. Orlandi, P. Pizani, V.R. Mastelaro, C. Paiva-Santos, E. Longo, J.A. Varela, Hydrothermal microwave: a new route to obtain photoluminescent crystalline BaTiO3 nanoparticles. Chem. Mater. 20(16), 5381–5387 (2008)Google Scholar
  15. 15.
    Q. Sun, Q. Gu, K. Zhu, R. Jin, J. Liu, J. Wang, J. Qiu, Crystalline structure, defect chemistry and room temperature colossal permittivity of Nd-doped barium titanate. Sci. Rep. 7, 42274 (2017)Google Scholar
  16. 16.
    S. Requena, S. Lacoul, Y.M. Strzhemechny, Luminescent properties of surface functionalized BaTiO3 embedded in Poly(methyl methacrylate). Materials 7(1), 471–483 (2014)Google Scholar
  17. 17.
    H. Li, S. Huang, W. Zhang, W. Pan, Visible photoluminescence from amorphous barium titanate nanofibers. J. Alloy. Compd. 551, 131–135 (2013)Google Scholar
  18. 18.
    S. Lu, Z. Xu, H. Chen, C. Mak, K. Wong, K. Li, K. Cheah, Time-resolved photoluminescence of barium titanate ultrafine powders. J. Appl. Phys. 99(6), 064103 (2006)Google Scholar
  19. 19.
    M. Moreira, M. Gurgel, G. Mambrini, E. Leite, P. Pizani, J.A. Varela, E. Longo, Photoluminescence of barium titanate and barium zirconate in multilayer disordered thin films at room temperature. J. Phys. Chem. A 112(38), 8938–8942 (2008)Google Scholar
  20. 20.
    R. Eglitis, V. Trepakov, S. Kapphan, G. Borstel, Quantum chemical modelling of ‘green’ luminescence in self activated perovskite-type oxides. Solid State Commun. 126(5), 301–304 (2003)Google Scholar
  21. 21.
    F. Pontes, C. Pinheiro, E. Longo, E. Leite, S. De Lazaro, R. Magnani, P. Pizani, T. Boschi, F. Lanciotti, Theoretical and experimental study on the photoluminescence in BaTiO3 amorphous thin films prepared by the chemical route. J. Lumin. 104(3), 175–185 (2003)Google Scholar
  22. 22.
    H. Zhan, X. Jiang, M. Zhu, X. Li, Z. Luo, K. Shu, Photoluminescence activity of BaTiO3 nanocrystals dependence on the structural evolution. J. Cryst. Growth 433, 80–85 (2016)Google Scholar
  23. 23.
    K.W. Lee, J.-W. Yoon, Intense visible photoluminescence of Mn-doped BaTiO3 nanofibers depended on disordered structure. J. Ceram. Process. Res. 17(10), 1111–1115 (2016)Google Scholar
  24. 24.
    K.W. Lee, K. Siva Kumar, G. Heo, M.J. Seong, J.W. Yoon, Characterization of hollow BaTiO3 nanofibers and intense visible photoluminescence. J. Appl. Phys. 114(13), 134303 (2013)Google Scholar
  25. 25.
    W. Zhang, Z. Yin, M. Zhang, Z. Du, W. Chen, Roles of defects and grain sizes in photoluminescence of nanocrystalline SrTiO3. J. Phys.: Condens. Matter. 11(29), 5655 (1999)Google Scholar
  26. 26.
    P. Pizani, E. Leite, F. Pontes, E. Paris, J. Rangel, E. Lee, E. Longo, P. Delega, J.A. Varela, Photoluminescence of disordered ABO3 perovskites. Appl. Phys. Lett. 77(6), 824–826 (2000)Google Scholar
  27. 27.
    E. Korkmaz, N.O. Kalaycioglu, Synthesis and luminescence properties of BaTiO3:RE (RE = Gd3+, Dy3+, Tb3+, Lu3+) phosphors. Bull. Mater. Sci. 35(6), 1011–1017 (2012)Google Scholar
  28. 28.
    D.-Y. Lu, D.-X. Guan, Photoluminescence associated with the site occupations of Ho3+ ions in BaTiO3. Sci. Rep. 7(1), 6125 (2017)Google Scholar
  29. 29.
    J. Hao, Y. Zhang, X. Wei, Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3: Yb/Er thin films. Angew. Chem. 123(30), 7008–7012 (2011)Google Scholar
  30. 30.
    H.L. Sun, X. Wu, T.H. Chung, K. Kwok, In-situ electric field-induced modulation of photoluminescence in Pr-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free ceramics. Sci. Rep. 6, 28677 (2016)Google Scholar
  31. 31.
    H. Zou, D. Peng, G. Wu, X. Wang, D. Bao, J. Li, Y. Li, X. Yao, Polarization-induced enhancement of photoluminescence in Pr3+ doped ferroelectric diphase BaTiO3–CaTiO3 ceramics. J. Appl. Phys. 114(7), 073103 (2013)Google Scholar
  32. 32.
    M. Vara, M. Chi, Y. Xia, Facile synthesis of BaTiO3 nanocubes with the use of anatase TiO2 nanorods as a precursor to titanium hydroxide. ChemNanoMat 2(9), 873–878 (2016)Google Scholar
  33. 33.
    A. Thanki, R. Goyal, Study on effect of cubic-and tetragonal phased BaTiO3 on the electrical and thermal properties of polymeric nanocomposites. Mater. Chem. Phys. 183, 447–456 (2016)Google Scholar
  34. 34.
    M.B. Smith, K. Page, T. Siegrist, P.L. Redmond, E.C. Walter, R. Seshadri, L.E. Brus, M.L. Steigerwald, Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale BaTiO3. J. Am. Chem. Soc. 130(22), 6955–6963 (2008)Google Scholar
  35. 35.
    S. Sun, X. Zhang, Q. Yang, S. Liang, X. Zhang, Z. Yang, Cuprous oxide (Cu2O) crystals with tailored architectures: a comprehensive review on synthesis, fundamental properties, functional modifications and applications. Prog. Mater Sci. 96, 111–173 (2018)Google Scholar
  36. 36.
    Q. Ma, K. Kato, Anisotropy in morphology and crystal structure of BaTiO3 nanoblocks. Mater. Des. 107, 378–385 (2016)Google Scholar
  37. 37.
    X. Li, H. Zhu, J. Wei, K. Wang, E. Xu, Z. Li, D. Wu, Determination of band gaps of self-assembled carbon nanotube films using Tauc/Davis–Mott model. Appl. Phys. A 97(2), 341–344 (2009)Google Scholar
  38. 38.
    A. Souza, G. Santos, B. Barra, W. Macedo Jr., S. Teixeira, C. Santos, A. Senos, L. Amaral, E. Longo, Photoluminescence of SrTiO3: influence of particle size and morphology. Cryst. Growth Des. 12(11), 5671–5679 (2012)Google Scholar
  39. 39.
    E. Orhan, J.A. Varela, A. Zenatti, M. Gurgel, F. Pontes, E. Leite, E. Longo, P. Pizani, A. Beltran, J. Andres, Room-temperature photoluminescence of BaTiO3: joint experimental and theoretical study. Phys. Rev. B 71(8), 085113 (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Advanced Nano Materials (ANoMa) Research Group, School of Fundamental ScienceUniversiti Malaysia TerengganuKuala NerusMalaysia
  2. 2.Department of Physics, Faculty of ScienceUniversiti Putra MalaysiaSerdangMalaysia
  3. 3.Department of Chemistry, Faculty of ScienceUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations