Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19368–19381 | Cite as

Enhanced photoluminescence and charge density studies of novel (Sm1−x Gdx)2O3 nanophosphors for WLED applications

  • Morris Marieli Antoinette
  • S. Israel
  • John L. Berchmans
  • G. J. Manoj
Article
  • 22 Downloads

Abstract

Pure Sm2O3 and Gd3+ doped Sm2O3 nanocrystalline powders were synthesized using the combustion method. The structural analysis from the Powder X-ray Diffraction revealed that pure and Gd3+ doped Sm2O3 nanocrystals of cubic phase with \(Ia\bar {3}~\) as the space group were produced. The High Resolution Transmission Electron Microscopy results confirmed that monodisperse nanocrystals having spherical shape were formed. The results of the Energy-Dispersive X-ray analysis confirmed that the samples were free from impurities. The UV–Vis-IR absorption and photoluminescence studies, carried out to study their optical properties, showed that these materials could be used for solid state lighting devices, particularly for UV/n-UV (near-ultraviolet) excited white light-emitting diodes. The charge density and photoluminescent behaviour in the chosen system were correlated using the MEM/Rietveld analysis.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflicts of interest.

References

  1. 1.
    E.W. Barrera, M.C. Pujol, C. Cascales, J.J. Carvajal, X. Mateos, M. Aguilo, F. Diaz, Synthesis and structural characterization of Tm:Lu2O3 nanocrystals. An approach towards new laser ceramics. Opt. Mater. 33, 722–727 (2011)CrossRefGoogle Scholar
  2. 2.
    D. Geng, G. Li, M. Shang, C. Peng, Y. Zhang, Z. Cheng, J. Lin, Nanocrystalline CaYAlO4:Tb3+/Eu3+ as promising phosphors for full-color field emission displays. Dalton Trans. 41, 3078–3086 (2012)CrossRefGoogle Scholar
  3. 3.
    M. Jayasimhadri, B.V. Ratnam, K. Jang, H.S. Lee et al., Greenish-yellow emission from Dy3+ doped Y2O3 nanophosphors. J. Am. Ceram. Soc. 93, 494–499 (2010)CrossRefGoogle Scholar
  4. 4.
    X. Zhang, F. Mo, Z.-C. Wu, Y. Chen, Achieving green–red-tunable emission through Tb3+–Eu3+ energy transfer in Sr3Y2(Si3O9)2: Tb3+, Eu3+ phosphors. J. Mater. Sci. (2017).  https://doi.org/10.1007/s10853-017-1746-6 CrossRefGoogle Scholar
  5. 5.
    K.T. Arul, J.R. Ramya, S.C. Vanithakumari, P. Magudapathy, U.K. Mudali, K.G.M. Nair, S.N. Kalkura, Novel ultraviolet emitting low energy nitrogen ion implanted magnesium ion incorporated nanocrystalline calcium phosphate. Mater. Lett. 153, 182–185 (2015)CrossRefGoogle Scholar
  6. 6.
    M.K. Jung, W.J. Park, D.H. Yoon, Photoluminescence characteristics of red phosphor Eu3+, Sm3+ co-doped Y2O3 for white light emitting diodes. Sens. Actuators B 126, 328–331 (2007)CrossRefGoogle Scholar
  7. 7.
    K.M. Girish, S.C. Prashantha, R. Naik, H. Nagabhushana, Zn2TiO4:A novel host lattice for Sm3+ doped reddish orange light emitting photoluminescent material for thermal and fingerprint sensor. Opt. Mater. 73, 197–205 (2017)CrossRefGoogle Scholar
  8. 8.
    O. Meza, E.G. Villabona-Leal, L.A. Diaz-Torres, H. Desirena, J.L. Rodriguez-Lopez, E. Perez, Luminescence concentration quenching mechanism in Gd2O3:Eu3+. J. Phys. Chem. A 118, 1390–1396 (2014)CrossRefGoogle Scholar
  9. 9.
    T. Sreethawong, S. Chavadej, S. Ngamsinlapasathian, S. Yoshikawa, Sol-gel synthesis of mesoporous assembly of Nd2O3 nanocrystals with the aid of structure-directing surfactant. Solid State Sci. 10, 20–25 (2008)CrossRefGoogle Scholar
  10. 10.
    A.B. Panda, Glaspell, M.S. El-Shall, Microwave synthesis and optical properties of uniform nanorods and nanoplates of rare earth oxides. J. Phys. Chem. C 111, 1861–1864 (2007)CrossRefGoogle Scholar
  11. 11.
    L. Yin, D. Wang, J. Huang, G. Tan, H. Ren, Controllable synthesis of Sm2O3 crystallites with the assistance of templates by a hydrothermal-calcination process. Mater. Sci. Semicond. Process. 30, 9–13 (2015)CrossRefGoogle Scholar
  12. 12.
    X. Chen, W. Xu, Y. Zhu, P. Zhou, S. Cui, L. Tao, L. Xu, H. Song, Nd2O3/Au nanocomposites: upconversion broadband emission and enhancement under near-infrared light excitation. J. Mater. Chem. C 2, 5857–5863 (2014)CrossRefGoogle Scholar
  13. 13.
    M. Chandrasekhar, D.V. Sunitha, N. Dhananjaya, H. Nagabhushana, S.C. Sharma, B.M. Nagabhushana, C. Shivakumara, R.P.S. Chakradhar, Thermoluminescence response in gamma and UV irradiated Dy2O3 nanophosphors. J. Lumin. 132, 1798–1806 (2012)CrossRefGoogle Scholar
  14. 14.
    Y. Wang, X. Bai, T. Liu, B. Dong, L. Xu, Q. Liu, H. Song, Solvothermal synthesis and luminescence properties of monodisperse Gd2O3:Eu3+and Gd2O3:Eu3+@ SiO2 nanospheres. J. Solid State Chem. 183, 2779–2785 (2010)CrossRefGoogle Scholar
  15. 15.
    G.K. Hodgson, S. Impellizzeri, G.L. Hallett-Tapley, J.C. Scaiano, Photochemical synthesis and characterization of novel samarium oxide nanoparticles: toward a heterogeneous Bronsted acid catalyst. RSC Adv. 5, 3728 (2015)CrossRefGoogle Scholar
  16. 16.
    S.Y. El-Zaiat, M.B. El-Den, S.U. El-Kameesy, Y.A. El-Gammam, Spectral dispersion of linear optical properties for Sm2O3 doped B2O3–PbO–Al2O3 glasses. Opt. Laser Technol. 44, 1270–1276 (2012)CrossRefGoogle Scholar
  17. 17.
    M.-H. Wu, C.-H. Cheng, C.-S. Lai, T.-M. Pan, Structural properties and sensing performance of high-k Sm2O3 membrane-based electrolyte–insulator–semiconductor for pH and urea detection. Sens. Actuators B 138, 221–227 (2009)CrossRefGoogle Scholar
  18. 18.
    V. Mandiwana, L. Kalombo, K. Venter, M. Sathekge, A. Grobler, J.R. Zeevaart, Samarium oxide as a radiotracer to evaluate the in vivo biodistribution of PLGA nanoparticles. J. Nanopart. Res. 17, 375 (2015)CrossRefGoogle Scholar
  19. 19.
    S.-Y. Huang, T.-C. Chang, M.-C. Chen, S.-C. Chen, H.-P. Lo, H.-C. Huang, D.-S. Gan, M.S. Simon. M.-J. Tsai, Resistive switching characteristics of Sm2O3 thin films for nonvolatile memory applications. Solid State Electron. 63, 189–191 (2011)CrossRefGoogle Scholar
  20. 20.
    P. Ghosh, S. Kundu, A. Kar, K.V. Ramanujachary, S. Lofland, A. Patra, Synthesis and characterization of different shaped Sm2O3 nanocrystals. J. Phys. D 43, 405401 (2010)CrossRefGoogle Scholar
  21. 21.
    S. Jiang, J. Liu, C. Lin, X. Li, Y. Li, High- pressure X-ray diffraction and Raman spectroscopy of phase transitions in Sm2O3,. J. Appl. Phys. 113, 113502 (2013)CrossRefGoogle Scholar
  22. 22.
    G. Li, Y. Wei, Z. Li, G. Xu, Synthesis and photoluminescence of Eu3+doped CaGd2(WO4)4 novel red phosphors for white LEDs applications. Opt. Mater. 66, 253–260 (2017)CrossRefGoogle Scholar
  23. 23.
    L. Zhou, Z. Gu, X. Liu et al., Size- tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging. J. Mater. Chem. 22, 966–974 (2012)CrossRefGoogle Scholar
  24. 24.
    R.K. Tamrakar, D.P. Bisen, K. Upadhyay, I.P. Sahu, M. Sahu, The down conversion properties of a Gd2O3:Er3+ phosphor prepared via a combustion synthesis method. RSC Adv. 6, 92360–92370 (2016)CrossRefGoogle Scholar
  25. 25.
    X. Teng, W. Wang, Z. Cao, J. Li, G. Duan, Z. Liu, The development of new phosphors of Tb3+/Eu3+ co-doped Gd3Al5O12 with tunable emission. Opt. Mater. 69, 175–180 (2017)CrossRefGoogle Scholar
  26. 26.
    Q. Tang, K. Qiu, W. Zhang, Y. Shen, J. Wang, Luminescence enhancement of Ca3Sr3(VO4)4:Eu3+, Sm3+ red-emitting phosphor by charge compensation. Opt. Mater. 75, 258–266 (2018)CrossRefGoogle Scholar
  27. 27.
    A. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56(10), 978–982 (1939)CrossRefGoogle Scholar
  28. 28.
    G.K. Willamson, W.H. Hall, X-ray broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953)CrossRefGoogle Scholar
  29. 29.
    H. Lin, C.P. Huang, W. Li, C. Ni, S.I. Shah, Y.-H. Tseng, Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl. Catal. B 68, 1–11 (2006)CrossRefGoogle Scholar
  30. 30.
    B. Umesh, B. Eraiah, H. Nagabhushana, B.M. Nagabhushana, G. Nagaraja, C. Shivakumara, R.P.S. Chakradhar, Synthesis and characterization of spherical and rod like nanocrystalline Nd2O3 phosphors. J. Alloys Compd. 509, 1146–1151 (2011)CrossRefGoogle Scholar
  31. 31.
    W.T. Carnall, P.R. Fields, K. Rajnak, Electronic energy levels in the trivalent lanthanide aquo ions. I, Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+*. J. Chem. Phys. 49, 4424–4442 (1968)CrossRefGoogle Scholar
  32. 32.
    M.M. Antoinette, S. Israel, A.J. Amali, J.L. Berchmans, B.S. Kumar, G.J. Manoj, U.M. Usmaniya, A novel synthesis of orange-red emitting (Sm1−x Cex)2O3 nanophosphors for UV LEDs. Nano Struct. Nano Objects 13, 51–58 (2018)CrossRefGoogle Scholar
  33. 33.
    H.M. Rietveld, A Profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969)CrossRefGoogle Scholar
  34. 34.
    V. Petricek, M. Dusek, L. Paltinus, Crystallographic computing system JANA2006: general features. Z. Kristallogr. 229(5), 345–352 (2014)Google Scholar
  35. 35.
    D.M. Collins, Electron density images from imperfect data by iterative entropy maximization. Nature 298, 49–51 (1982)CrossRefGoogle Scholar
  36. 36.
    M. Takata, The MEM/Rietveld method with nano-applications—accurate charge-density studies of nano-structured materials by synchrotron-radiation powder diffraction. Acta Crystallogr. A 64, 232–245 (2008)CrossRefGoogle Scholar
  37. 37.
    M.M. Antoinette, S. Israel, G. Sathya, A.J. Amali, J.L. .Berchmans, K. Sujatha, C. Anzline, R.N. Devi, Experimental charge density distribution and its correlation to structural and optical properties of Sm3+ doped Nd2O3 nanophosphors. J. Rare Earths 35, 1102–1114 (2017)CrossRefGoogle Scholar
  38. 38.
    S. Saravanakumar, S. Sasikumar, S. Israel, G.R. Pradhiba, R. Saravanan, Structural, magnetic and charge-related properties of nano-sized cerium manganese oxide, a dilute magnetic oxide semiconductor. Mater. Sci. Semicond. Process. 17, 186–193 (2014)CrossRefGoogle Scholar
  39. 39.
    A.D. Ruben, I. Fujio, Super-fast Program PRIMA for the Maximum-Entropy Method, (Advanced materials Laboratory, National Institute for Materials Science, Tsukuba, 2004)Google Scholar
  40. 40.
    K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Post Graduate and Research Department of PhysicsThe American CollegeMaduraiIndia
  2. 2.Electro-Pyrometallurgy DivisionCSIR-Central Electrochemical Research InstituteKaraikudiIndia

Personalised recommendations