Skip to main content
Log in

SM3+-Activated LiZnPO4 Phosphors: Synthesis, Characterization, and Their Luminescent Properties for White Light-Emitting Diode Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This work presents a comprehensive analysis of the synthesis, structural–spectroscopic characterization, thermal stability, and luminescent attributes of Sm3+-activated LiZnPO4 phosphors with diverse Sm3+ doping percentiles that work towards developing luminescent materials for white-light-emitting diode (WLED) applications. The polycrystalline samples of LiZn(1 − x) Smx3+PO4 (x = 0, 0.01, 0.03, 0.05, 0.07, 0.09, and 0.10) phosphor were synthesized using a solid-state reaction (SSR) technique. X-ray diffraction (XRD) and Rietveld refinement indicate a single-phase monoclinic structure of all compositions with the C1c1 space group. Phase purity and stoichiometry of elemental composition were validated by Fourier transform infrared (FTIR) spectroscopy and energy-dispersive spectroscopy (EDS) examination. Field-emission scanning electron microscopy (FE-SEM) images indicate irregular and nonuniform microstructures for all compositions with a mean dimension of 1.252 µm. The investigation of diffuse reflectance (DR) spectra with the Kubelka–Munk function F(R) determines the compound's bandgap to be 3.1 eV. Time-of-flight secondary ion mass spectroscopy (ToF-SIMS) indicates various ions are regularly distributed across the surface. Further, the photometric analysis reveals that the Commission Internationale de l'Éclairage (CIE) coordinates are roughly (0.55, 0.44), and color purity is greater than 82% in all compositions. These results, along with the photoluminescence (PL) spectral analysis, lifetime analysis, and thermal stability, indicate that Sm3+-doped LiZnPO4 is a viable orange-red-emitting phosphor candidate for creating white-light-emitting diodes (WLEDs).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. J. McKittrick and L.E. Shea-Rohwer, Review: down conversion materials for solid-state lighting. J. Am. Ceram. Soc. 97, 1327 (2014). https://doi.org/10.1111/JACE.12943.

    Article  CAS  Google Scholar 

  2. G.B. Nair, H.C. Swart, and S.J. Dhoble, A review on the advancements in phosphor-converted light emitting diodes (pc-LEDs): phosphor synthesis, device fabrication, and characterization. Prog. Mater. Sci. 109, 100622 (2020). https://doi.org/10.1016/J.PMATSCI.2019.100622.

    Article  CAS  Google Scholar 

  3. V. Kumar, S. Som, S. Dutta, S. Das, and H.C. Swart, Red-light-emitting inorganic La2CaZnO5 frameworks with high photoluminescence quantum efficiency: theoretical approach. Mater. Des. 93, 203 (2016). https://doi.org/10.1016/j.matdes.2015.12.153.

    Article  CAS  Google Scholar 

  4. H. Hu and W. Zhang, Synthesis and properties of transition metals and rare-earth metals doped ZnS nanoparticles. Opt. Mater. 28, 536 (2006). https://doi.org/10.1016/J.OPTMAT.2005.03.015.

    Article  CAS  Google Scholar 

  5. S. Sheoran, V. Singh, S. Singh, S. Kadyan, J. Singh, and D. Singh, Down-conversion characteristics of Eu3+ doped M2Y2Si2O9 (M = Ba, Ca, Mg and Sr) nanomaterials for innovative solar panels. Prog. Nat. Sci. Mater. Int. 29, 457 (2019). https://doi.org/10.1016/J.PNSC.2019.07.003.

    Article  CAS  Google Scholar 

  6. J. Penning, K. Stober, V. Taylor, M. Yamada, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications, OSTI.GOV, DOE/EE-1467 7703 (2016). https://doi.org/10.2172/1374119

  7. S. Ray, P. Tadge, S. Dutta, T.M. Chen, G.B. Nair, and S.J. Dhoble, Synthesis, luminescence and application of BaKYSi2O7:Eu2+ A new blue-emitting phosphor for near-UV white-light LED. Ceram. Int. 44, 8334 (2018). https://doi.org/10.1016/J.CERAMINT.2018.02.022.

    Article  CAS  Google Scholar 

  8. G. Blasse and B.C. Grabmaier, A general introduction to luminescent materials, Luminescent Materials. ed. G. Blasse, and B.C. Grabmaier (Berlin: Springer, 1994), p. 1. https://doi.org/10.1007/978-3-642-79017-1_1.

    Chapter  Google Scholar 

  9. A.J. Kenyon, Recent developments in rare-earth doped materials for optoelectronics. Prog. Quantum Electron. 26, 225 (2002). https://doi.org/10.1016/S0079-6727(02)00014-9.

    Article  CAS  Google Scholar 

  10. Y.C. Li, Y.H. Chang, Y.F. Lin, Y.S. Chang, and Y.J. Lin, Synthesis and luminescent properties of Ln3+ (Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors. J. Alloys Compd. 439, 367 (2007). https://doi.org/10.1016/J.JALLCOM.2006.08.269.

    Article  CAS  Google Scholar 

  11. M.R. Brown, A.F.J. Cox, W.A. Shand, and J.M. Williams, Sensitization of rare earth photoluminescence in II–VI compounds. II. Site sensitive excitation mechanisms in zinc selenide. J. Phys. C Solid State Phys. 5, 502 (1972). https://doi.org/10.1088/0022-3719/5/4/016.

    Article  CAS  Google Scholar 

  12. G. Blasse, New luminescent materials. Chem. Mater. 1, 294 (1989). https://doi.org/10.1021/cm00003a005.

    Article  CAS  Google Scholar 

  13. X. Dou, W. Zhao, E. Song, G. Zhou, C. Yi, and M. Zhou, Photoluminescence characterization of Ca10Na(PO4)7:Eu3+ red-emitting phosphor. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 78, 821 (2011).

    Article  Google Scholar 

  14. N. Tyagi, A.A. Reddy, and R. Nagarajan, KLaF4: Er an efficient upconversion phosphor. Opt. Mater. 33, 42 (2010). https://doi.org/10.1016/j.optmat.2010.07.014.

    Article  CAS  Google Scholar 

  15. A.C. Tropper, J.N. Carter, R.D.T. Lauder, D.C. Hanna, S.T. Davey, and D. Szebesta, Analysis of blue and red laser performance of the infra-red pumped praseodymium-doped fluoride fiber laser. J. Opt. Soc. Am. B 11, 886 (1994).

    Article  CAS  Google Scholar 

  16. X.Y. Huang, S.Y. Han, W. Huang, and X.G. Liu, Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev. 42, 173 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. D.Q. Chen, Y.S. Wang, and M.C. Hong, Lanthanide nanomaterials with photon management characteristics for photovoltaic application. Nano Energy 1, 73 (2012).

    Article  CAS  Google Scholar 

  18. D.Q. Chen and P. Huang, Highly intense upconversion luminescence in Yb/Er:NaGdF4@NaYF4 core-shell nanocrystals with complete shell enclosure of the core. Dalton Trans. 43, 11299 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. M.Y. Ding, D.Q. Chen, T.J. Chen, C.H. Lu, Y.R. Ni, and Z.Z. Xu, Hydrothermal synthesis and upconversion luminescence properties of BaFCl:Yb3+/Er3+ microsheets. Mater. Lett. 128, 101 (2014).

    Article  CAS  Google Scholar 

  20. K. Shwetabh, S.K. Maurya, A. Banerjee, R. Poddar, and K. Kumar, Synthesis of NaYF4:Ho 3+/Yb3+ colloidal upconversion phosphor and its application for OCT-based imaging, temperature sensing, fingerprinting and security ink. New J. Chem. 46, 21950 (2022). https://doi.org/10.1039/D2NJ03878A.

    Article  CAS  Google Scholar 

  21. J. Hu, X. Bian, R. Wang, L. Liu, N. Ilyas, F. Wang, Z. Song, and H. Fu, Giant enhancement in upconversion luminescence of β-Ba2ScAlO5:Yb3+/Er3+ phosphor by the intermediate band through Ca 2+ doping. Chem. Mater. 34, 3089 (2022). https://doi.org/10.1021/acs.chemmater.1c04142.

    Article  CAS  Google Scholar 

  22. J. Hu, R. Wang, Z. Wei, X. Wu, F. Wang, L. Liu, Y. Li, H. Fu, and Q.-H. Xu, Strong red upconversion luminescence and optical thermometry of Yb3+/Er3+ Co-doped β-Ba2ScAlO5 phosphor. J. Alloys Compd. 895, 162692 (2022). https://doi.org/10.1016/j.jallcom.2021.162692.

    Article  CAS  Google Scholar 

  23. S. Peng, F. Lai, Z. Xiao, H. Cheng, Z. Jiang, and W. You, Upconversion luminescence and temperature sensing properties of Er3+/Yb3+ doped double-perovskite Ba2LaNbO6 phosphor. J. Lumin. 242, 118569 (2022). https://doi.org/10.1016/j.jlumin.2021.118569.

    Article  CAS  Google Scholar 

  24. F. Li, L. Li, C. Guo, T. Li, H. Mi Noh, and J.H. Jeong, Up-conversion luminescence properties of Yb3+-Ho3+ co-doped CaLa2ZnO5. Ceram. Int. 40, 7363 (2014). https://doi.org/10.1016/j.ceramint.2013.12.080.

    Article  CAS  Google Scholar 

  25. Q. Ning, C. Zhou, and Y. Shi, Effect of Eu3+ doping on ZnWO4 phosphors luminescent properties and study of J–O theory. J. Solid State Chem. 290, 121458 (2020). https://doi.org/10.1016/J.JSSC.2020.121458.

    Article  CAS  Google Scholar 

  26. A.H. Wako, F.B. Dejene, and H.C. Swart, Combustion synthesis, characterization and luminescence properties of barium aluminate phosphor. J. Rare Earths 32, 806 (2014). https://doi.org/10.1016/S1002-0721(14)60145-9.

    Article  CAS  Google Scholar 

  27. P.M. Maleka, L. Reddy, T.J. Nkosi, A. Balakrishna, R.E. Kroon, H.C. Swart, and O.M. Ntwaeaborwa, Structural and morphological characterization of photoluminescent cerium-doped near UV-blue sodium ortho-phosphate phosphors. J. Lumin. 226, 117409 (2020). https://doi.org/10.1016/J.JLUMIN.2020.117409.

    Article  CAS  Google Scholar 

  28. A. Balakrishna, L. Reddy, O.M. Ntwaeaborwa, and H.C. Swart, Remarkable influence of alkaline earth ions on the enhancement of fluorescence from Eu3+ ion doped in sodium ortho-phosphate phosphors. J. Mol. Struct. 1203, 127375 (2020). https://doi.org/10.1016/J.MOLSTRUC.2019.127375.

    Article  CAS  Google Scholar 

  29. C.B. Palan, N.S. Bajaj, A. Soni, and S.K. Omanwar, Synthesis and luminescence properties of Tb3+-doped LiMgPO4 phosphor. Bull. Mater. Sci. 39, 1157 (2016). https://doi.org/10.1007/s12034-016-1261-4.

    Article  CAS  Google Scholar 

  30. C.C. Lin, R.S. Liu, Y.S. Tang, and S.F. Hu, Full-color and thermally stable KSrPO4:Ln (Ln = Eu, Tb, Sm) phosphors for white-light-emitting diodes. J. Electrochem. Soc. 155, J248 (2008). https://doi.org/10.1149/1.2953591.

    Article  CAS  Google Scholar 

  31. X. Li, L. Guan, X. Li, J. Wen, and Z. Yang, Luminescent properties of NaBaPO4:Eu3+ red-emitting phosphor for white light-emitting diodes. Powder Technol. 200, 12 (2010). https://doi.org/10.1016/j.powtec.2010.01.020.

    Article  CAS  Google Scholar 

  32. D.K. Yim, H.J. Song, I.-S. Cho, J.S. Kim, and K.S. Hong, A novel blue-emitting NaSrPO4:Eu2+ phosphor for near UV based white light-emitting-diodes. Mater. Lett. 65, 1666 (2011). https://doi.org/10.1016/j.matlet.2011.03.033.

    Article  CAS  Google Scholar 

  33. L. Shi, Y. Huang, and H.J. Seo, Emission red shift and unusual band narrowing of Mn2+ in NaCaPO4 phosphor. J. Phys. Chem. A 114, 6927 (2010). https://doi.org/10.1021/jp101772z.

    Article  CAS  PubMed  Google Scholar 

  34. T.-S. Chan, R.-S. Liu, and I. Baginskiy, Synthesis, crystal structure, and luminescence properties of a novel green-yellow emitting phosphor LiZn1−xPO4:Mnx for light emitting diodes. Chem. Mater. 20, 1215 (2008). https://doi.org/10.1021/cm7028867.

    Article  CAS  Google Scholar 

  35. Y. Liu, D. Tu, H. Zhu, and X. Chen, Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem. Soc. Rev. 42, 6924 (2013). https://doi.org/10.1039/c3cs60060b.

    Article  CAS  PubMed  Google Scholar 

  36. K. Saidi, W. Chaabani, and M. Dammak, Highly sensitive optical temperature sensing based on pump-power-dependent upconversion luminescence in LiZnPO4:Yb3+-Er3+/Ho3+ phosphors. RSC Adv. 11, 30926 (2021). https://doi.org/10.1039/D1RA06049J.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Y.-C. Li, Y.-H. Chang, Y.-F. Lin, Y.-S. Chang, and Y.-J. Lin, Synthesis and luminescent properties of Ln3+ (Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors. J. Alloys Compd. 439, 367 (2007). https://doi.org/10.1016/j.jallcom.2006.08.269.

    Article  CAS  Google Scholar 

  38. A.A. Setlur, J.J. Shiang, and U. Happek, Eu2+-Mn2+ phosphor saturation in 5 mm light emitting diode lamps. Appl. Phys. Lett. 92, 081104 (2008). https://doi.org/10.1063/1.2885093.

    Article  CAS  Google Scholar 

  39. I. Kumar and A.K. Gathania, Photoluminescence and quenching study of the Sm3+-doped LiBaPO4 phosphor. J. Mater. Sci. Mater. Electron. 33, 328 (2022). https://doi.org/10.1007/s10854-021-07301-7.

    Article  CAS  Google Scholar 

  40. K.-H. Chen, M.-H. Weng, R.-Y. Yang, and C.-T. Pan, New NaSrPO4:Sm3+ phosphor as orange-red emitting material. Bull. Mater. Sci. 39, 1171 (2016). https://doi.org/10.1007/s12034-016-1270-3.

    Article  CAS  Google Scholar 

  41. C.C. Lin, Y.S. Tang, S.F. Hu, and R.S. Liu, KBaPO4:Ln (Ln = Eu, Tb, Sm) phosphors for UV excitable white light-emitting diodes. J. Lumin. 129, 1682 (2009). https://doi.org/10.1016/j.jlumin.2009.03.022.

    Article  CAS  Google Scholar 

  42. H. Manh Ha, Photoluminescence and energy transfer between Sm3+ ions in LaF3 nanocrystals prepared by hydrothermal method. IJMSA 5, 284 (2016). https://doi.org/10.11648/j.ijmsa.20160506.18.

    Article  CAS  Google Scholar 

  43. Z. Xia and D. Chen, Synthesis and luminescence properties of BaMoO4:Sm3+ phosphors. J. Am. Ceram. Soc. 93, 1397 (2010). https://doi.org/10.1111/j.1551-2916.2009.03574.x.

    Article  CAS  Google Scholar 

  44. P. Kubelka and F. Munk, A contribution to the optics of pigments. Z. Technol. Phys. 12, 593 (1931).

    Google Scholar 

  45. J.I. Pankove, Optical Processes in Semiconductors (Englewood Cliffs: Courier Corporation, Prentice-Hall, 1971).

    Google Scholar 

  46. K. Saidi and M. Dammak, Crystal structure, optical spectroscopy and energy transfer properties in NaZnPO4:Ce3+, Tb3+ phosphors for UV-based LEDs. RSC Adv. 10, 21867 (2020). https://doi.org/10.1039/D0RA04163G.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. D.A. Hakeem and K. Park, Synthesis and luminescence properties of blue Na(Sr0.97-xCax)PO4:0.03Eu2+ phosphors for white light emitting diode applications. J. Nanosci. Nanotechnol. 15, 5074 (2015). https://doi.org/10.1166/jnn.2015.10385.

    Article  CAS  PubMed  Google Scholar 

  48. Z. Yahiaoui, M.A. Hassairi, and M. Dammak, Synthesis and optical spectroscopy of YPO4:Eu3+ orange-red phosphors. J. Electron. Mater. 46, 4765 (2017). https://doi.org/10.1007/s11664-017-5401-4.

    Article  CAS  Google Scholar 

  49. S. Lucas, E. Champion, D. Bernache-Assollant, and G. Leroy, Rare earth phosphate powders RePO4·nH2O (Re = La, Ce or Y) II. Thermal behaviour. J. Solid State Chem. 177, 1312 (2004). https://doi.org/10.1016/j.jssc.2003.11.004.

    Article  CAS  Google Scholar 

  50. V. Koleva, E. Zhecheva, and R. Stoyanova, A new phosphate-formate precursor method for the preparation of carbon coated nano-crystalline LiFePO4. J. Alloys Compd. 476, 950 (2009). https://doi.org/10.1016/j.jallcom.2008.09.144.

    Article  CAS  Google Scholar 

  51. C.R. Patra, G. Alexandra, S. Patra, D.S. Jacob, A. Gedanken, A. Landau, and Y. Gofer, Microwave approach for the synthesis of rhabdophane-type lanthanide orthophosphate (Ln = La, Ce, Nd, Sm, Eu, Gd and Tb) nanorods under solvothermal conditions. New J. Chem. 29, 733 (2005). https://doi.org/10.1039/b415693e.

    Article  CAS  Google Scholar 

  52. I. Gupta, S. Singh, S. Bhagwan, and D. Singh, Rare earth (RE) doped phosphors and their emerging applications: a review. Ceram. Int. 47, 19282 (2021). https://doi.org/10.1016/j.ceramint.2021.03.308.

    Article  CAS  Google Scholar 

  53. W.T. Carnall, G.L. Goodman, K. Rajnak, and R.S. Rana, A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3. J. Chem. Phys. 90, 3443 (1989). https://doi.org/10.1063/1.455853.

    Article  CAS  Google Scholar 

  54. D.W. Goodwin, Spectra and energy levels of rare earth ions in crystals. Phys. Bull. 20, 525 (1969). https://doi.org/10.1088/0031-9112/20/12/010.

    Article  Google Scholar 

  55. R. Withnall and J. Silver, Physics of light emission from rare earth-doped phosphors, Handbook of Visual Display Technology. ed. J. Chen, W. Cranton, and M. Fihn (Berlin: Springer, 2015), p. 1. https://doi.org/10.1007/978-3-642-35947-7_68-2.

    Chapter  Google Scholar 

  56. R. Reisfeld, G. Panczer, A. Patra, and M. Gaft, Time-resolved spectroscopy of Sm3+ in silica and silica–Al sol–gel glasses Mater. Lett. 38, 413 (1999).

    CAS  Google Scholar 

  57. A. Watras, P.J. Deren, and R. Pazik, Luminescence properties and determination of optimal RE3+ (Sm3+, Tb3+ and Dy3+) doping levels in the KYP2O7 host lattice obtained by combustion synthesis. New J. Chem. 38, 5058 (2014).

    Article  CAS  Google Scholar 

  58. G. Blasse, Energy transfer between inequivalent Eu2+ ions. J. Solid State Chem. 62, 207 (1986). https://doi.org/10.1016/0022-4596(86)90233-1.

    Article  CAS  Google Scholar 

  59. D.L. Dexter, A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836 (1953). https://doi.org/10.1063/1.1699044.

    Article  CAS  Google Scholar 

  60. S. Huang and L. Lou, Concentration dependence of sensitizer fluorescence intensity in energy transfer. Chin. J. Lumin 11(1), 1 (1990).

    Google Scholar 

  61. D. Balaji, K. Kavvirasu, A. Durairajan, and S. Moorthy Babu, Photluminescence properties of novel Sm3+ and Dy3+ co-activated CsGd(WO4)2 phosphors. J. Alloys Compd. 637, 350 (2015). https://doi.org/10.1016/j.jallcom.2015.03.024.

    Article  CAS  Google Scholar 

  62. X. Mi, J. Sun, P. Zhou, H. Zhou, D. Song, K. Li, M. Shang, and J. Lin, Tunable luminescence and energy transfer properties in Ca8MgLu(PO4)7:Ce3+, Tb3+, Mn2+ phosphors. J. Mater. Chem. C 3, 4471 (2015). https://doi.org/10.1039/C4TC02433H.

    Article  CAS  Google Scholar 

  63. I. Ayoub and V. Kumar, Synthesis, photoluminescence, Judd–Ofelt analysis, and thermal stability studies of Dy3+-doped BaLa2ZnO5 phosphors for solid-state lighting applications. RSC Adv. 13, 13423 (2023). https://doi.org/10.1039/D3RA02659K.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. N. Hussain, S. Rubab, and V. Kumar, Spectroscopic characterizations and investigation of Judd-Ofelt intensity parameters of Dy3+-doped Ba2La8(SiO4)6O2 near white light emitting phosphor. Ceram. Int. 49, 15341 (2023). https://doi.org/10.1016/j.ceramint.2023.01.118.

    Article  CAS  Google Scholar 

  65. S. Arun Kumar and K. Marimuthu, concentration effect of Sm3+ ions on B2O3-PbO-PbF2-Bi2O3-ZnO glasses structural and luminescence investigations. J. Alloys compd. 565, 104 (2013).

    Article  CAS  Google Scholar 

  66. J. Jargus, J. Vitasek, J. Nedoma, V. Vasinek, and R. Martinek, Effect of selected luminescent layers on CCT, CRI, and response times. Materials 12, 2095 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. C.S. McCamy, Correlated color temperature as an explicit function of chromaticity coordinates. Color Res. Appl. 17, 142 (1992).

    Article  Google Scholar 

  68. P. Du and J.S. Yu, Photoluminescence and cathodoluminescence properties of Eu3+ ions activated AMoO4 (A = Mg, Ca, Sr, Ba) phosphors. Mater. Res. Bull. 70, 553 (2015). https://doi.org/10.1016/j.materresbull.2015.05.022.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors, Haqnawaz Rafiq and Mudasir Farooq, express their gratitude to Islamic University of Science and Technology, Awantipora, Kashmir, for its financial support. The corresponding author thanks the Government of India's UGC-BSR Research Start-Up-Grant, no. F.30-498/2019 (BSR), for its financial support. We also thank the National Institute of Technology (NIT) Srinagar's Chemistry Department and the Central Research Facility Centre (CRFC) for their research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Hashim Rasool.

Ethics declarations

Conflict of interest

The authors declare that they have no any conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiq, H., Farooq, M., Rubab, S. et al. SM3+-Activated LiZnPO4 Phosphors: Synthesis, Characterization, and Their Luminescent Properties for White Light-Emitting Diode Applications. J. Electron. Mater. 53, 2929–2945 (2024). https://doi.org/10.1007/s11664-024-11061-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-024-11061-5

Keywords

Navigation