Skip to main content
Log in

MgBi2V2O9: preparation and electrical property evaluation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The bismuth layered structure oxide, MgBi2V2O9, was prepared using solid state reaction technique. Room temperature X-ray diffraction study confirms the formation of the material with a monoclinic crystal structure with lattice parameters 5.1950, 11.7010, and 5.0920 Å respectively. Morphological analysis from the SEM images reveals the formation of spherical grains in the sample. Electrical properties of the respective sample were observed in a wide range of temperature (25–500 °C) and frequency (1 kHz–1 MHz). The material exhibits dielectric dispersion. Hysteresis loop at room temperature proves the existence of ferroelectric property in the material. The d33 value of the ceramic sample was obtained as 7 C/N from piezoelectric study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.A. De Araujo Paz, J.D. Cuchiaro, L.D. Mcmillan, M.C. Scott, J.F. Scott, Fatigue-free ferroelectric capacitors with platinum electrodes. Nature 374, 627–629 (1995)

    Article  Google Scholar 

  2. B. Aurivillius, Mixed bismuth oxides with layer lattices: I. The structure type of CaNb2Bi2O9, Ark Kemi 1, 463–480 (1949)

    Google Scholar 

  3. E.C. Subarrao, A family of ferroelectric bismuth compounds. J. Phys. Chem. Solids 23, 665–676 (1962)

    Article  Google Scholar 

  4. R.E. Newnham, R.W. Wolfe, J.F. Dorrian, Structural basis of ferroelectricity in the bismuth titanate family. Mater. Res. Bull. 6, 1029–1039 (1971)

    Article  Google Scholar 

  5. B. Li, X. Wang, X. Han, X. Qi, L. Li, Spark-plasma-sintering of bulk SrBi2Ta2O9 materials. J. Mater. Sci. 39, 2621–2623 (2004)

    Article  Google Scholar 

  6. H. Yan, H. Zhang, R. Ubic, M.J. Reece, J. Liu, Z. Shen, Z. Zhang, A lead-free high-curie-point ferroelectric ceramic, CaBi2Nb2O9. Adv. Mater. 17, 1261–1265 (2005)

    Article  Google Scholar 

  7. H. Yan, H. Zhang, M.J. Reece, X. Dong, Thermal depoling of high Curie point Aurivillius phase ferroelectric ceramics. Appl. Phys. Lett. 87, 082911 (2005)

    Article  Google Scholar 

  8. H. Yan, H. Zhang, R. Ubic, M. Reece, J. Liu, Z. Shen, Orientation dependence of dielectric and relaxor behaviour in Aurivillius phase BaBi2Nb2O9 ceramics prepared by spark plasma sintering. J. Mater. Sci. 17, 657–661 (2006)

    Article  Google Scholar 

  9. Y. Wu, Ch.. Nguzen, S. Seraji, M. Forbess, S.J. Limmer, Processing and properties of strontium bismuth vanadate niobate ferroelectric ceramics. J. Am. Ceram. Soc. 84, 2882–2888 (2001)

    Article  Google Scholar 

  10. B. Jimenez, P. Duran-Martin, A. Castro, P. Millan, Obtention and characterization of modified Bi2SrNb2O9 Aurivillius-type ceramics, Ferroelectrics 186, 93–96 (1996)

    Article  Google Scholar 

  11. P. Duran-Martin, A. Castro, P. Millan, B. Jimenez, Influence of Bi-site substitution on the ferroelectricity of the Aurivillius compoundBi2SrNb2O9. J. Mater. Res. 13, 2565–2579 (1998)

    Article  Google Scholar 

  12. Y. Wu, G. Cao, Enhanced ferroelectric properties and lowered processing temperatures of strontium bismuth niobiates with vanadium doping. Appl. Phys. Lett. 75, 2650–2655 (1999)

    Article  Google Scholar 

  13. P. Millan, A. Ramirez, A. Castro, Substitution of smaller Sb3+ and Sn2+ cations for Bi3+ in Aurivillius-like phases, J. Mater. Sci. Lett. 14, 1657–1660 (1995)

    Article  Google Scholar 

  14. C.A.P. deAraujo, J.D. Cuchiaro, I.D. McMillan, M.C. Scott, J.F. Scott, Fatigue freeferroelectric capacitors with platinum electrodes, Nature 374, 627–629 (1995)

    Article  Google Scholar 

  15. J. Glaum, M. Hoffman, Electric fatigue of lead-free piezoelectric materials. J. Am. Ceram. Soc. 97, 665–680 (2014)

    Article  Google Scholar 

  16. G.C.C. daCosta, A.Z. Simoes, A. Ries, C.R. Forchini, M.A. Zaghete, J.A. Varela, Phase formation and characterization of BaBi2Ta2O9 obtained by mixed oxide procedure. Mater. Lett. 58, 1709–1714 (2004)

    Article  Google Scholar 

  17. M. Adamczyk, L. Kozielski, M. Pilch, M. Pawełczykc, A. Soszyńskib, Influence of vanadium dopant on relaxor behaviour of BaBi2Nb2O9 ceramics, Ceram. Int. 39, 4589–4595 (2013)

    Article  Google Scholar 

  18. P. Dhak, D. Dhak, M. Das, P. Pramanik, Dielectric and impedance spectroscopy study of Ba0.8Bi2.133Nb1.6Ta0.4O9 ferroelectric ceramics, prepared by chemical route, J. Mater.Sci. 22, 1750–1760 (2011)

    Google Scholar 

  19. I. Mayergouz, G. Bertotti (eds.), The Science of Hysteresis (Elsevier, Oxford, 2005)

    Google Scholar 

  20. N. Pavlović, V. Koval, J. Dusza, V. Srdi, Effect of Ce and La substitution on dielectric properties of bismuth titanate ceramics. Ceram. Int. 37, 487–492 (2011)

    Article  Google Scholar 

  21. J.D. Bobić, M.M. Vijatović Petrović, J. Banys, B.D. Stojanović, Effect of La substitution on the structural and electrical properties of BaBi4–xLaxTi4O15. Ceram. Int. 39, 8049–8057 (2013)

    Article  Google Scholar 

  22. M. Verma, K. Sreenivas, V. Gupta, Influence of La doping on structural and dielectric properties of SrBi2Nb2O9 ceramics. J. Appl. Phys 105(024511), 1–5 (2009)

    Google Scholar 

  23. S. Sahoo, P. K. Mahapatra, R.N.P. Choudhary, M.L. Nandagoswami, A. Kumar, Structural, electrical and magnetic characteristics of improper multiferroic: GdFeO3. Mater. Res. Express 3, 065017 (2016)

    Article  Google Scholar 

  24. B.C. Sutar, R.N.P. Choudhary, P.R. Das, Dielectric and impedance spectroscopy of barium bismuth vanadate ferroelectrics, J. Electron. Mater. 43(7), 2621–2630 (2014)

    Article  Google Scholar 

  25. L. Alexander, H.P. Klug, Determination of crystallite size with the X-ray spectrometer. J. Appl. Phys. 21, 137 (1950)

    Article  Google Scholar 

  26. R.D. Gould, C.J. Bowler, C. D., Electrical properties of evaporated thin films of CdTe. Thin Solid Films 164, 281–287 (1988)

    Article  Google Scholar 

  27. B.B. Ismail, R.D. Gould, Structural and electronic properties of evaporated thin films of cadmium telluride. Phys. Status Solidi (a) 115, 237–245(1989)

    Article  Google Scholar 

  28. J. B. Moon, A. S. Bhalla, C. B. Chun, K. J. Nam, Dielectric anomalies in Li0.4K0.6NbO3. Phys. Status Solidi (a), 140, 239 (1993)

    Article  Google Scholar 

  29. S.C. Raghavendra, R.L. Raibagkar, A.B. Kulkarni, Dielectric properties of fly ash. Bull. Mater. Sci. 25, 37–39 (2002)

    Article  Google Scholar 

  30. J.C. Anderson, Dielectrics (Chapman and Hall, London, 1964)

    Google Scholar 

  31. G.A. Samara, High-pressure studies of ionic conductivity in solids. Solid State Phys. 18, 1–80 (1984)

    Google Scholar 

  32. A.K. Jonscher, The universal dielectric response. Nature 267, 673–679 (1977)

    Article  Google Scholar 

  33. R.N.P. Choudhary, D.K. Pradhan, C.M. Tirado, G.E. Bonilla, R.S. Katiyar, Effect of La substitution on structural and electrical properties of Ba(Fe2/3W1/3)O3 nanoceramics. J. Mater. Sci. 42, 7423–7432 (2007)

    Article  Google Scholar 

  34. T.L. Qu, Y.G. Zhao, D. Xie, J.P. Shi, Q.P. Chen, T.L. Ren, Resistance switching and white-light photovoltaic effects in BiFeO3/Nb–SrTiO3 heterojunctions. Appl. Phys. Lett. 98, 173507 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Patri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepti, P.L., Patri, S.K. & Choudhary, R.N.P. MgBi2V2O9: preparation and electrical property evaluation. J Mater Sci: Mater Electron 28, 16071–16076 (2017). https://doi.org/10.1007/s10854-017-7507-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7507-0

Navigation