Skip to main content
Log in

An experimental study of magnetorheological fluids on electrical conductivity property

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Magnetorheological fluids (MRFs) are smart materials made by base fluid, magnetizable particles, and stabilizer additives. A series of samples on varying of silicone oil, carbonyl iron particles, and oleic acid were prepared to investigate the stability of sedimentation and electrical conductivity property. Experimental results showed that the sample with mole ratio of oleic acid and carbonyl iron particles is two has the smallest saturation resistance, fastest response to external field, and the best stability of sedimentation. Further investigations suggested that low silicone oil viscosity and suitable amount carbonyl iron particles were desirable for enhance the electrical conductivity property of MRFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Ghaffari, S.H. Hashemabadi, M. Ashtiani, A review on the simulation and modeling of magnetorheological fluids. J. Intel. Mater. Syst. Struct. 26, 881–904 (2015)

    Article  Google Scholar 

  2. X.P. Do, S.B. Choi, High loaded mounts for vibration control using magnetorheological fluids: review of design configuration. Shock Vib. (2015). Doi:10.1155/2015/915859

    Google Scholar 

  3. M. Ashtiani, S.H. Hashemabadi, A. Ghaffari, A review on the magnetorheological fluid preparation and stabilization. J. Magn. Magn. Mater. 374, 716–730 (2015)

    Article  Google Scholar 

  4. A.Y. Abd Fatah, S.A. Mazlan, T. Koga, H. Zamzuri, M. Zeinali, F. Imaduddin, A review of design and modeling of magnetorheological valve. Int. J. Mod. Phys. B 29, 1530004 (2015)

    Article  Google Scholar 

  5. J. de Vicente, D.J. Klingenberg, R. Hidalgo-Alvarez, Magnetorheological fluids: a review. Soft Matter 7, 3701–3710 (2011)

    Article  Google Scholar 

  6. S. Genc, P.P. Phule, Rheological properties of magnetorheological fluids. Smart Mater. Struct. 11, 140–146 (2002)

    Article  Google Scholar 

  7. X.K. Wei, M. Zhu, L.M. Jia, A semi-active control suspension system for railway vehicles with magnetorheological fluid dampers. Vehicle Syst. Dyn. 54, 982–1003 (2016)

    Article  Google Scholar 

  8. D. Case, B. Taheri, E. Richer, Dynamical modeling and experimental study of a small-scale magnetorheological damper. IEEE Asme Trans. Mechatron. 19, 1015–1024 (2014)

    Article  Google Scholar 

  9. I. Bica, Electroconductive magnetorheological suspensions. Smart Mater. Struct. 15, N151 (2006)

    Article  Google Scholar 

  10. I. Bica, Electrical conductivity of magnetorheological suspensions based on iron microparticles and mineral oil in alternative magnetic field. J. Ind. Eng. Chem. 12, 806–810 (2006)

    Google Scholar 

  11. I. Bica, The influence of temperature and of a longitudinal magnetic field upon the electrical conductivity of magnetorheological suspensions. Physica B 371, 145–148 (2006)

    Article  Google Scholar 

  12. J. Vezys, E. Dragasius, V. Volkovas, A. Mystkowski, E. Korobko, The sedimentation of magneto-rheological fluid monitoring system based on resistivity measuring. Mechanika 22, 449–452 (2016)

    Article  Google Scholar 

  13. Y.H. Huang, Y.H. Jiang, X.B. Yang, R.Z. Xu, Influence of oleic and lauric acid on the stability of magnetorheological fluids. J. Magn. 20, 317–321 (2015)

    Article  Google Scholar 

  14. I. Bica, Giant resistances based on magnetorheological suspensions. J. Ind. Eng. Chem. 13, 299–304 (2007)

    Google Scholar 

  15. I. Bica, The influence of hydrostatic pressure and transverse magnetic field on the electric conductivity of the magnetorheological elastomers. J. Ind. Eng. Chem. 18, 483–486 (2012)

    Article  Google Scholar 

  16. I. Bica, E.M. Anitas, L.M.E. Averis, Influence of magnetic field on dispersion and dissipation of electric field of low and medium frequencies in hybrid magnetorheological suspensions. J. Ind. Eng. Chem. 27, 334–340 (2015)

    Article  Google Scholar 

  17. I. Bica, E.M. Anitas, M. Bunoiu, B. Vatzulik, I. Juganaru, Hybrid magnetorheological elastomer: influence of magnetic field and compression pressure on its electrical conductivity. J. Ind. Eng. Chem. 20, 3994–3999 (2014)

    Article  Google Scholar 

  18. I. Bica, M. Balasoiu, M. Bunoiu, L. Iordaconiu, Microparticles and electroconductive magnetorheological suspensions. Rom. J. Phys. 61, 926–945 (2016)

    Google Scholar 

  19. L. Bica, Magnetorheological suspension based on mineral oil, iron and graphite micro-particles. J. Magn. Magn. Mater. 283, 335–343 (2004)

    Article  Google Scholar 

  20. Q.X. Zhang, X.H. Liu, Y.K. Ren, L.F. Wang, Y. Hu, Effect of particle size on the wear property of magnetorheological fluid. Adv. Mater. Sci. Eng. (2016). Doi:10.1155/2016/4740986

    Google Scholar 

  21. X.H. Liu, L.F. Wang, H. Lu, D.D. Wang, Q.Q. Chen, Z.B. Wang, Effect of silicone oil viscosity on the properties of magnetorheological fluids. Optoelectron. Adv. Mater. 9, 226–230 (2015)

    Google Scholar 

  22. M.R. Morrow, J.P. Whitehead, D. Lu, Chain-length dependence of lipid bilayer properties near the liquid-crystal to gel phase-transition. Biophys. J. 63, 18–27 (1992)

    Article  Google Scholar 

  23. M. Ashtiani, S.H. Hashemabadi, An experimental study on the effect of fatty acid chain length on the magnetorheological fluid stabilization and rheological properties. Colloid Surf. A 469, 29–35 (2015)

    Article  Google Scholar 

  24. Y.H. Huang, Y.H. Jiang, X.B. Yang, H.Y. Sun, H.G. Piao, R.Z. Xu, Enhanced conductivity of magnetorheological fluids based on silver coated carbonyl particles. J. Mater. Sci. Mater. Electron. 27, 255–259 (2016)

    Article  Google Scholar 

  25. X.B. Yang, Y.H. Jiang, Y.H. Huang, R.Z. Xu, H.G. Piao, G.M. Jia, X.Y. Tan, Magnetic-field-tuned insulator to conductor transition in magnetorheological suspension. J. Magn. 19, 345–348 (2014)

    Article  Google Scholar 

  26. H.J. Choi, I.B. Jang, J.Y. Lee, A. Pich, S. Bhattacharya, H.J. Adler, Magnetorheology of synthesized core-shell structured nanoparticle. IEEE Trans. Magn. 41, 3448–3450 (2005)

    Article  Google Scholar 

  27. N.M. Wereley, A. Chaudhuri, J.H. Yoo, S. John, S. Kotha, A. Suggs, R. Radhakrishnan, B.J. Love, T.S. Sudarshan, Bidisperse magnetorheological fluids using Fe particles at nanometer and micron scale. J. Intel. Mater. Syst. Struct. 17, 393–401 (2006)

    Article  Google Scholar 

  28. W.Q. Jiang, Y.L. Zhang, S.H. Xuan, C.Y. Guo, X.L. Gong, Dimorphic magnetorheological fluid with improved rheological properties. J. Magn. Magn. Mater. 323, 3246–3250 (2011)

    Article  Google Scholar 

  29. F.F. Fang, J.H. Kim, H.J. Choi, Synthesis of core-shell structured PS/Fe3O4 microbeads and their magnetorheology. Polymer 50, 2290–2293 (2009)

    Article  Google Scholar 

  30. D. Bica, L. Vekas, M.V. Avdeev, O. Marinica, V. Socoliuc, M. Balasoiu, V.M. Garamus, Sterically stabilized water based magnetic fluids: synthesis, structure and properties. J. Magn. Magn. Mater. 311, 17–21 (2007)

    Article  Google Scholar 

  31. X. Chen, X.Q. Zhu, Z.Y. Xu, Y.C. Lin, G.T. He, The research of the conductive mechanism and properties of magnetorheological fluids. Physica B 418, 32–35 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by China Three Gorges University Talent Start-up Funds Nos. KJ2014B079 and KJ2014B080, Scientific Research Project of Yichang City No. A16-302-a14, as well as Hong Kong Research Grants Council (RGC) General Research Funds (GRF) No. CityU 11301215.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruizhen Xu or Paul K. Chu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Huang, Y., Hou, Y. et al. An experimental study of magnetorheological fluids on electrical conductivity property. J Mater Sci: Mater Electron 28, 8130–8135 (2017). https://doi.org/10.1007/s10854-017-6519-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6519-0

Keywords

Navigation