Skip to main content
Log in

Enhanced conductivity of magnetorheological fluids based on silver coated carbonyl particles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Magnetorheological fluid (MRF) are mostly characterized by a remarkable change in their rheological behavior. However, the poor conductivity limit their potential electrical applications. To enhance the electrical properties of MRF, MRF based on silver-coated carbonyl iron (CI) micro-particles dispersed in silicon oil with oleic acid and addictives are prepared. The electrical properties of MRF were remarkably improved due to the inherent outstanding electrical conductivity of silver. The saturation resistance of the modified MRF was about three order magnitude reduced from 7.7 to 14 KΩ. Moreover, the magnetic response speed was around 7 times faster than that of the un-modified materials. Coating good conductivity material on CI particles offers a more practical new mean to improve the electrical characteristics of MRF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E.M. Furst, A.P. Gast, Phys. Rev. E 61, 6732 (2000)

    Article  Google Scholar 

  2. M.A. Willard, L.K. Kurihara, E.E. Carpenter, S. Calvin, V. Harris, G. Int. Mater. Rev. 49, 125 (2004)

    Article  Google Scholar 

  3. Y.Q. Ni, Z.G. Ying, Z.H. Chen, Earthq. Eng. Eng. Vib. 9, 345 (2010)

    Article  Google Scholar 

  4. P.J. Rankin, A.T. Horvath, D.J. Klingenberg, Rheol. Acta 38, 471 (1999)

    Article  Google Scholar 

  5. D.H. Kim, Y.S. Song, Carbohydr. Polym. 126, 240 (2015)

    Article  Google Scholar 

  6. J.L. Viota, F. González-Caballero, J.D.G. Durán, A.V. Delgado, J. Colloid Interface Sci. 309, 135 (2007)

    Article  Google Scholar 

  7. B.D. Chin, J.H. Park, M.H. Kwon, O.O. Park, Rheol. Acta 40, 211 (2001)

    Article  Google Scholar 

  8. H. See, R. Tanner, Rheol. Acta 42, 268 (2002)

    Google Scholar 

  9. M. Ashtiani, S.H. Hashemabadi, Colloids Surf. A 469, 29 (2015)

    Article  Google Scholar 

  10. M.T. López-López, J. de Vicente, J. Mater. Res. 20, 874 (2005)

    Article  Google Scholar 

  11. O. Ashour, C.A. Rogers, W. Kordonsky, J. Intelligent Mater. Syst. Struct. 7, 123 (1996)

    Article  Google Scholar 

  12. H.G. Lagger, T. Breinlinger, J.G. Korvink, J. Nonnewton. Fluid Mech. 218, 16 (2015)

    Article  Google Scholar 

  13. J. Huang, J.Q. Zhang, Y. Yang, Y.Q. Wei, J. Mater. Process. Technol. 129(1), 559 (2002)

    Article  Google Scholar 

  14. S.J. Dyke, B.F. Spencer Jr., M.K. Sain, J.D. Carlson, Mater. Struct. 5, 693 (1998)

    Article  Google Scholar 

  15. X. Huang, A. Mohla, W. Hong, F. Ashraf, Soft Matter 10, 1537 (2014)

    Article  Google Scholar 

  16. M. Aslam, Y. Xiong-liang, D. Zhong-chao, J. Mar. Sci. Appl. 5, 17 (2006)

    Google Scholar 

  17. J.D. Carlson, M.R. Jolly, Mechatronics 10, 555 (2000)

    Article  Google Scholar 

  18. A.K. El Wahed, J.L. Sproston, G.K. Schleyer, Mater. Des. 23, 391 (2002)

    Article  Google Scholar 

  19. D. Sathianarayanan, L. Karunamoorthy, J. Srinivasan, G.S. Kandasami, K. Palanikumar, Mater. Manuf. Process. 23, 329 (2008)

    Article  Google Scholar 

  20. I. Bica, J. Ind. Eng. Chem. 13, 299 (2007)

    Google Scholar 

  21. I. Bica, J. Magn. Magn. Mater. 299, 412 (2006)

    Article  Google Scholar 

  22. X. Chen, X. Zhu, Z. Xu, Phys. B 418, 32 (2013)

    Article  Google Scholar 

  23. R. Agustín-Serrano, F. Donado, E. Rubio-Rosas, J. Magn. Magn. Mater. 335, 149 (2013)

    Article  Google Scholar 

  24. W.M. Albers, M. Karttunen, L. Wikström, T. Vilkman, J. Mater. Sci. Mater. Electron. 10(42), 2983 (2013)

    Article  Google Scholar 

  25. T.M. Simon, F. Reitich, M.R. Jolly, K. Ito, H.T. Banks, Math. Comput. Model. 33, 273 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the Three Gorges University Master’s Degree Thesis pew Fund (2015PY033), the financial of National Science Foundation of China (Grant No. 51177088). Key scientific research project of hubei provincial department of education of China (No. D20151205) and guiding scientific research project of hubei provincial department of education of China (No. B2015246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiongbo Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Jiang, Y., Yang, X. et al. Enhanced conductivity of magnetorheological fluids based on silver coated carbonyl particles. J Mater Sci: Mater Electron 27, 255–259 (2016). https://doi.org/10.1007/s10854-015-3748-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3748-y

Keywords

Navigation