Skip to main content

Tribology of Intelligent Magnetorheological Materials

  • Chapter
  • First Online:
Tribology in Materials and Applications

Part of the book series: Materials Forming, Machining and Tribology ((MFMT))

  • 903 Accesses

Abstract

Magneto rheological (MR) fluid are categorized as one of smart materials, where the viscosity of the fluid enhances significantly under the influence of applied magnetic field. The fluids are set up by scattering micron scale magnetic particles into a fluid media called as carrier fluid with added substances for improving the rheological characteristics of fluid. The fundamental element of these fluid is the capacity to undergo change from fluidized state to semisolid state under controllable yield stress within couple of milliseconds in the wake of externally activated magnetic field. Lower magneto rheological impact and sedimentation of particles in MR fluids are the most challenging topics against the broad applications of MR fluid revolution in current ventures. Different techniques have been proposed and utilized by analysts to enhance the magneto rheological impact and stability of these liquids against the sedimentation. The primary focal point of this brief is to show a thorough survey on various strategies for synthesis and reduction in sedimentation rate of MR fluids. Besides, rheological models and use of MR liquids are talked about along this compilation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Kordonsky, O. Ashour, C.A. Rogers, Magnetorheological fluids: materials, characterization, and devices. J. Intell. Mater. Syst. Struct. 7, 123–130 (1996)

    Article  Google Scholar 

  2. P.P. Phulé, J.M. Ginder, A.D. Jatkar, Synthesis and properties of magnetorheological fluids for active vibration control, in Materials for Smart Systems II (Materials Research Society, Boston, MA, 1996)

    Google Scholar 

  3. K.D. Weiss et al., High strength magneto- and electro-rheological fluids. SAE Trans. 102, 425–430 (1993)

    Google Scholar 

  4. R.W. Phillips, Engineering applications of fluid with a variable yield stress, 1969

    Google Scholar 

  5. K.P. Tan, R. Stanway, W.A. Bullough, Braking responses of inertia/load by using an electro-rheological (ER) brake. J. Mechatron. 17, 277–289 (2007)

    Article  Google Scholar 

  6. E. Park, D. Stoikov, L. Falcao de Luz, A. Suleman, A performance evaluation of an automotive magnetorheological brake design with a sliding mode controller. Mechatronics 16(16), 405 (2006)

    Article  Google Scholar 

  7. E.J. Park, L. Falcao da Luz, A. Suleman, Multidisciplinary design optimization of an automotive magnetorheological brake design. Comput. Struct. 86, 207 (2007)

    Article  Google Scholar 

  8. Y. Shiao, Q.A. Nguyen, Structural analysis and validation of the multi-pole magnetorheological brake for motorcycles. Procedia Eng. 76, 24 (2014)

    Article  Google Scholar 

  9. D.J. Carlson, Magnetorheological brake with integrated flywheel. U.S. Patent 6,186,290 Bl, 2001

    Google Scholar 

  10. K. Karakoc, E.J. Park, A. Suleman, Design considerations for an automotive magneto-rheological brake. Mechatronics 18(8), 434 (2008)

    Article  Google Scholar 

  11. G.M. Webb, Exercise apparatus and associated method including rheological fluid brake. U.S. Patent 5,810,696, 1998

    Google Scholar 

  12. S. Bydon, Construction and Operation of Magnetorheological Rotary Brake (Archiwum Process Control, 2002), p. 20

    Google Scholar 

  13. B. Liu, W.H. Li, P.B. Kosasih, X.Z. Zhang, Development of an MR brake based haptic device. Smart Mater. Struct. 15, 1960 (2006)

    Article  Google Scholar 

  14. C.M. Chew, G.S. Hong, Development of a compact double-disk magnetorheological fluid brake. Robotica 25, 493 (2006)

    Google Scholar 

  15. W. Zhou, C.M. Chew, G.S. Hong, Development of a compact double-disk magnetorheological fluid brake. Robotica 55, 493 (2006)

    Google Scholar 

  16. J.D. Carlson, What makes a good MR fluid? J. Intell. Mater. Syst. Struct. 13, 431 (2002)

    Article  Google Scholar 

  17. P.P. Phule, A.D. Jatkar, Synthesis and processing magnetic iron cobalt alloy particles for high strength magnetorheological fluids, in 6th International Conference on ER Fluids, MR Suspensions and Their Applications (World Scientific, Yonezawa, Japan, 1997), pp. 503–510

    Google Scholar 

  18. Q. Nguyen, S. Choi, Optimal design of an automotive magnetorheological brake considering geometric dimensions and zero-field friction heat. Smart Mater. Struct. 19 (2010)

    Article  Google Scholar 

  19. P.P. Phule, J.M. Ginder, Synthesis and properties of novel magnetorheological fluids having improved stability and redispersibility, in 6th International Conference on ER Fluids, MR Suspensions and Their Applications (World Scientific, Yonezawa, Japan, 1997), pp. 445–453

    Google Scholar 

  20. E. Lemaire, A. Meunier, G. Bossis, J. Liu, D. Felt, P. Bahtovoi, N. Matoussevitch, Influence of the particle size on the rheology of magnetorheological fluids. J. Rheol. 39, 1011–1020

    Article  CAS  Google Scholar 

  21. C. Kormann, H. Laun, H. Ritcher, MR fluids with nanosized magnetic panicles. Int. J. Mod. Phys. B 10, 3167–3172 (1996)

    Article  CAS  Google Scholar 

  22. N. Rosenfeld, N.M. Wereley, R. Radhakrishnan, T.S. Sudarshan, Behavior of magnetorheological fluids utilizing nanopowder iron. Int. J. Mod. Phys. B 16(17–18), 2392–2398 (2002)

    Article  CAS  Google Scholar 

  23. A. Chaudhuri, G. Nang, N.M. Wereley, V. Tasovksi, R. Radhakrislman, Substitution of micron by nanometer scale powders in magnetorheological fluids. Int. J. Mod. Phys. B: Condens. Matter Phys. 19(7–9), 1374–1380 (2005)

    Article  CAS  Google Scholar 

  24. N.M. Werely, A. Chaudhuri, J.H. Yoo, S. John, S. Kotha, A. Suggs, R. Radhakrishnan, B.J. Love, T.S. Sudarshan, Bidisperse magnetorheological fluids using Fe particles at nanometer and micron scale. J. Intell. Mater. Syst. Struct. 17, 393–401 (2006)

    Article  Google Scholar 

  25. B.J. Park, K.H. Song, H.J. Choi, Magnetic carbonyl lion nanoparticle based magnetorheological suspension and its characteristics. Mater. Lett. 63(15), 1350–1352 (2009)

    Article  CAS  Google Scholar 

  26. E.F. Burguera, B.J. Love, R. Sahul, G. Ngatu, N.M. Wereley, A physical basis for stability in bimodal dispersions including micrometer-sized particles and nanoparticles using both linear and non-linear models to describe yield. J. Intell. Mater. Syst. Struct. 19(11), 1361–1367 (2008)

    Article  CAS  Google Scholar 

  27. F.F. Fang, H.J. Choi, M.S. Jhon, Magnetorheology of soft magnetic carbonyl iron suspension with single-walled carbon nanotube additive and its yield stress scaling function. Colloids Surf. A 351(1–3), 46–51 (2009)

    Article  CAS  Google Scholar 

  28. M.T. Lopez-Lopez, P. Kuzhir, A. Meunier, G. Bossis, Synthesis and magneto rheology of suspensions of cobalt particles with tunable particle size. J. Phys.: Conf. Ser. 149, 012073 (2009)

    Google Scholar 

  29. S.T. Lim, M.S. Cho, I.B. Jang, H.J. Choi, Magnetorheological characterization of carbonyl iron suspension stabilized by finned silica. J. Magn. Magn. Mater. 282, 170–173 (2004)

    Article  CAS  Google Scholar 

  30. C. Fang, B.Y. Zhao, L.S. Chen, Q. Wu, N. Liu, K.A. Ku, The effect of the green additive guar gum on the properties of magnetorheological fluid. Smart Mater. Struct. 14, N1–N5 (2005)

    Article  Google Scholar 

  31. P. Pilule, Magnetorheological fluid. U.S. Patent 5,985,168, 1999

    Google Scholar 

  32. V.R. Foista Iyanger, S.M. Yugelevic, Stabilization of magnetorheological fluid suspensions using a mixture of organoclays. U.S. Patent 6_io/7-P1

    Google Scholar 

  33. B. Jang, H.B. Kim, J.Y. Lee, J.L. You, Role of organic coating on carbonyl iron suspended particles in magnetorheological fluids. J. Appl. Phys. 97, 1–3 (2005)

    Article  Google Scholar 

  34. P. Phule, Synthesis of novel magnetorheological fluids. MRS Bull. 23, 23–24 (1998)

    Article  CAS  Google Scholar 

  35. C.W. Macosko, Rheology: Principles, Measurements, and Applications (VCH Publishers Inc., New York, 1994)

    Google Scholar 

  36. J. Rabinow, Magnetic fluid torque and force transmitting device. U.S. Patent 1951, USA

    Google Scholar 

  37. N.M. Wereley, J.U. Cho, Y.T. Choi, S.B. Choi, Magnetorheological dampers in shear mode. Smart Mater. Struct. 17(1), 015022 (2008)

    Article  Google Scholar 

  38. M.R. Jolly, J.W. Bender, R.T. Mathers, Indirect measurement of micro structural development in magnetorheological fluids, in 6th International Conference on ER Fluids, MR Suspensions and Their Applications (World Scientific, Yonezawa, Japan, 1997), pp. 471–477

    Google Scholar 

  39. M. Kciuk, R. Turczyn, Properties and application of magnetorheological fluids. J. Achiev. Mater. Manuf. Eng. 18, 127–130 (2006)

    Google Scholar 

  40. P.J. Rankin, A.T. Horvath, D.J. Klingenberg, Magnetorheology in viscoplastic media. Rheol. Acta 38, 471–477 (1999)

    Article  CAS  Google Scholar 

  41. V.R. Iyanger, Durable magnetorheological fluid compositions. U.S. Patent 6,818,143, 2004

    Google Scholar 

  42. M.A. Golden, J.C. Ulieny, K.S. Snavely, A.L. Smith, Magnetorheological fluids. U.S. Patent 6,932,917, 2005

    Google Scholar 

  43. J. Rabinow, The magnetic fluid clutch. AIEE Trans. 67, 1308 (1948)

    Google Scholar 

  44. P. Poddar, J.L. Wilson, H. Srikanth, J.-H. Yoo, N.N. Wereley, S. Kotha, L. Barthouty, R. Radhakrishnan, Nanocomposite magneto-rheological fluids with uniformly dispersed Fe nanoparticles. J. Nanosci. Nanotechnol. 4(1–2), 192–196 (2004)

    Article  CAS  Google Scholar 

  45. J.D. Carlson, M.R. Jolly, MR fluid, foam and elastomer devices. Mechatronics 10, 555–569 (2000)

    Article  Google Scholar 

  46. J.D. Vicente, D.J. Klingenberg, R. Hidalgo-Alvarez, Magnetorheological fluids: a review. Soft Matter 7, 3701–3710 (2011)

    Article  Google Scholar 

  47. I. Bica, Y.D. Liu, H.J. Choi, Physical characteristics of magnetorheological suspensions and their applications. J. Ind. Eng. Chem. 19, 394–406 (2013)

    Article  CAS  Google Scholar 

  48. J. Wang, G. Meng, Magnetorheological fluid devices: principles, characteristics and applications in mechanical engineering (Part L). Proc. Inst. Mech. Eng. 215, 165–174 (2001)

    Article  Google Scholar 

  49. A.G. Olabi, A. Grunwald, Design and application of magneto-rheological fluid. Mater. Des. 28, 2658–2664 (2007)

    Article  CAS  Google Scholar 

  50. W.W. Chooi, S.O. Oyadiji, Design, modelling and testing of magnetorheological (MR) dampers using analytical flow solutions. Comput. Struct. 86, 473–482 (2008)

    Article  Google Scholar 

  51. C. Guerrero-Sanchez, T. Lara-Ceniceros, E. Jimenez-Regalado, M. Rasa, U.S. Schubert, Magnetorheological fluids based on ionic liquids. Adv. Mater. 19, 1740–1747 (2007)

    Article  CAS  Google Scholar 

  52. J.H. Park, B.D. Chin, O.O. Park, Rheological properties and stabilization of magnetorheological fluids in a water-in-oil emulsion. J. Colloid Interface Sci. 240, 349–354 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Jagadeesha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jinaga, R., Kolekar, S., Jagadeesha, T. (2020). Tribology of Intelligent Magnetorheological Materials. In: Katiyar, J., Ramkumar, P., Rao, T., Davim, J. (eds) Tribology in Materials and Applications. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-030-47451-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47451-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47450-8

  • Online ISBN: 978-3-030-47451-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics