Skip to main content

Advertisement

Log in

Electric pulse consolidation: an alternative to spark plasma sintering

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article includes a comprehensive review of the methods of sintering of powder materials based on the use of electric current as a technological tool and presenting alternatives to the spark plasma sintering technique. The described sintering methods utilize electric discharges of several kilovolts (as opposed to low-voltage processing employed by spark plasma sintering), electric current densities exceeding 10 kA cm−2, and pressures of up to 10 GPa. In most cases, the powder to be consolidated is subjected to a single electric pulse of short duration (shorter than 0.1 s). The general term used to refer to these methods is electric pulse sintering (EPS). At present, the methods of EPS are rapidly advancing, which stimulates the development of their technical capabilities and equipment. This review provides a description of the facilities used by research groups in different countries. The EPS set-ups vary by the type of electric pulse generator, pressing equipment, geometrical features of the working chambers, die materials, as well as by other elements of design making each set-up unique among similar ones. In the paper, in addition to the practical technological aspects, the main physical processes occurring during EPS are described. The mechanisms of sintering as well as the influence of sintering parameters on the quality of the compacts are also discussed. Possibilities of using EPS for the production of high-strength materials, complex composite materials, nanostructured materials, and metal–ceramic composites are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58

Similar content being viewed by others

References

  1. Abramova KB, Samujlov SD, Filin YA (1998) Nonferr Met 12:70 (in Russian)

    Google Scholar 

  2. Samujlov SD (2009) Ferrous Met 2:14–19 (in Russian)

  3. Olevsky EA, Aleksandrova EV, Ilyina AM, Dudina DV, Novoselov AN, Pelve KY, Grigoryev EG (2013) Materials 6:4375

    Article  ADS  Google Scholar 

  4. Grasso S, Sakka Y, Maizza G (2009) Sci Technol Adv Mater 10:1

    Google Scholar 

  5. Schütte P, Moll H, Theisen W (2010) In: Proceedings of the PM2010 powder metallurgy world congress, European Powder Metallurgy Association, Florence

  6. Schütte P, Moll H, Theisen W, Schmidt J (2011) In: Euro PM2011—sintering: spark plasma & microwave, European Powder Metallurgy Association, Barcelona

  7. Schütte P, Garcia J, Theisen W (2009) In: Proceedings Euro PM2009, European Powder Metallurgy Association, Kopenhagen

  8. Egan D, Melody S (2009) Met Powder Rep 64(6):10

    Article  Google Scholar 

  9. Ryabinina ON, Raichenko AI, Fuhchich OI et al (1977) Sov Powder Metall Met Ceram 16:188

    Article  Google Scholar 

  10. Orru R, Licheri R, Locci AM et al (2009) Mater Sci Eng R 63:127

    Article  Google Scholar 

  11. Hangria T, Galy J, Castro A (2009) Adv Eng Mater 8:615

    Article  Google Scholar 

  12. Saheb N, Iqbal Z, Khalil A et al (2012) J Nanomater 2012:1

    Article  Google Scholar 

  13. Skorov DM, Balankin SA, Bashlykov SS, Danilkin EA (1975) USSR Patent no 760570 (in Russia)

  14. Clyens S, Al-Hassani STS, Johnson W (1975) British Patent no 45778

  15. Cuppoletti J (2011) Nanocomposites with unique properties and applications in medicine and industry. InTech, Croatia

    Book  Google Scholar 

  16. Olevsky E, Dudek HJ, Kaysser WA (1996) Acta Mater 44:715

    Article  CAS  Google Scholar 

  17. Rosinski M, Kruszewski M, Michalski A, Fortuna-Zalesna E (2011) Fusion Eng Des 86:2573

    Article  CAS  Google Scholar 

  18. Olevsky E, Froyen L (2006) Scr Mater 55:1175

    Article  CAS  Google Scholar 

  19. Olevsky E, Kandukuri S, Froyen L (2007) J Appl Phys 102:114913

    Article  ADS  Google Scholar 

  20. Olevsky E, Froyen L (2009) J Am Ceram Soc 92:S122

    Article  CAS  Google Scholar 

  21. Li W, Olevsky EA, McKittrick J, Maximenko AL, German RM (2012) J Mater Sci 47:7036. doi:10.1007/s10853-012-6515-y

    Article  CAS  ADS  Google Scholar 

  22. Olevsky EA, Bradbury WL, Haines CD, Martin DG, Kapoor D (2012) J Am Ceram Soc 95:2406

    Article  CAS  Google Scholar 

  23. Olevsky EA, Garcia-Cardona C, Bradbury WL, Haines CD, Martin DG, Kapoor D (2012) J Am Ceram Soc 95:2414

    Article  CAS  Google Scholar 

  24. Olevsky E, Bogachev I, Maximenko A (2013) Scr Mater 69:112

    Article  CAS  Google Scholar 

  25. Giuntini D, Wei X, Li W, Ilyina A, Olevsky E (2013) Int J Refract Metals Hard Mater 41:501

    Article  CAS  Google Scholar 

  26. Giuntini D, Olevsky EA, Garcia-Cardona C, Maximenko AL, Yurlova MS, Haines CD, Martin DG, Kapoor D (2013) Materials 6:2612

    Article  ADS  Google Scholar 

  27. Anisnmov AG, Mali VI (2010) Phys Combust Explos 46:135 (in Russian)

    Google Scholar 

  28. Grigoryev EG (2009) Bull MSPU 1:52 (in Russian)

    Google Scholar 

  29. Maizza G, Tassinari A (2009) In: Proceedings of the COMSOL conference 2009, Milan, p 1

  30. Grigoryev EG (2008) Bull Russ Acad Sci Phys 72:1278 (in Russian)

    Article  Google Scholar 

  31. Grigoryev EG, Olevsky EA (2012) Scr Mater 66:662

    Article  CAS  Google Scholar 

  32. Williams DJ, Johnson W (1982) Powder Metall 25:85

    CAS  Google Scholar 

  33. Al-Hassani STS (1979) Wire Ind 46:809

    Google Scholar 

  34. Davies TJ, Al-Hassani STS (1980) In: Le-May I (ed) Advances in materials technology in America, materials processing and performance, vol 2. American Society of Mechanical Engineers, Fairfield

    Google Scholar 

  35. Kim DK, Pak HR, Okazaki K (1988) Mater Sci Eng A 104:191

    Article  Google Scholar 

  36. Lee WH, Kim SJ, Lee WJ et al (2001) J Mater Sci 36:3573. doi:10.1023/A:1017905305737

    Article  CAS  ADS  Google Scholar 

  37. Clyens S, Al-Hassani STS (1976) Int J Mech Sci 18(1):37

    Article  Google Scholar 

  38. Zhang J, Zavaliangos A, Groza JR (2003) P/M Sci Technol Brief 5(4):5

    Google Scholar 

  39. Al-Hassani STS, Can M, Watson EJ (1986) J Comput Appl Math 15:175

    Article  MATH  Google Scholar 

  40. Ervin DR, Bourell DL, Persad C, Rabenberg L (1988) Mater Sci Eng 102:25

    Article  Google Scholar 

  41. Fais A (2010) J Mater Process Technol 210:2223

    Article  CAS  Google Scholar 

  42. Fais A, Maizza G (2008) J Mater Process Technol 202:70

    Article  CAS  Google Scholar 

  43. Gorbachev LP, Grigoryev EG, Novikov SV (1989) Modeling of the process of coating deposition by electric pulse sintering. Preprint: MEPhI, Moscow (in Russian)

  44. Belyavin KE, Min’ko DV, Kuznechik OO (2004) J Eng Phys Thermophys 77(3):136

    Google Scholar 

  45. Kim YH, Cho YJ, Lee CM et al (2007) Scr Mater 56:449

    Article  CAS  Google Scholar 

  46. Wu X, Guo J (2007) J Mater Sci 42:7787. doi:10.1007/s10853-007-1646-2

    Article  CAS  ADS  Google Scholar 

  47. Cho JY, Song GA, Choi HS et al (2012) J Alloys Compd 536:78

    Article  Google Scholar 

  48. Wu XY, Zhang W, Li DX, Guo JD (2007) Mater Sci Technol 23:627

    Article  CAS  Google Scholar 

  49. Fahmy Y, Conrad H (2001) Metall Mater Trans 3:811

    Google Scholar 

  50. Abramova KB, Bocharov YN, Samujlov SD, Scherbakov IP (2001) Tech Phys 71(4):122 (in Russian)

    Google Scholar 

  51. Zavodov NN, Kozlov AV, Luzganov SN et al (1999) Therm Phys High Temp 37:135 (in Russian)

    Google Scholar 

  52. Rock C, Qiu J, Okazaki K (1998) J Mater Sci 33:241. doi:10.1023/A:1004386822343

    Article  CAS  ADS  Google Scholar 

  53. Okazaki K (2000) Mater Sci Eng 287:189

    Article  Google Scholar 

  54. Al-Hassani STS (1982) In: Reports of union-wide conference 1981, Vysheishaya Shkola, Minsk

  55. Alitavoli M, Darvizeh A (2009) J Mater Process Technol 209:3542

    Article  CAS  Google Scholar 

  56. Grigoryev EG (2011) In: Cuppolrtti J (ed) Nanocomposites with unique properties and applications in medicine and industry. InTech, Croatia, p 345

    Google Scholar 

  57. Kriegsmann GA (2008) J Appl Math 68:1503

    MathSciNet  MATH  Google Scholar 

  58. An YB, Oh NH, Chun YW et al (2004) Mater Lett 59:2178

    Article  Google Scholar 

  59. Grigoryev EG, Mitrofanov AV, Rosliakov AV (2000) In: Proceedings of the scientific session of MEPhI, part 9, Moscow (in Russian)

  60. Belyavin KE (2000) Theoretical and technological bases of electric pulse sintering of refractory metal powders and application of the technology in industrial manufacturing of porous metallic parts. Synopsis of thesis of the dissertation, Research Institute of Powder Metallurgy with pilot production, Minsk (in Russian)

  61. Grigoryev EG (2008) Bull MSPU 1:85 (in Russian)

    Google Scholar 

  62. Grigoriev EG, Rosliakov AV (2007) J Mater Process Technol 191:182

    Article  CAS  Google Scholar 

  63. Popov VP, Grigor’ev EG, Novikov SV et al (1996) Powder Metall Met Ceram 35:32

    Article  Google Scholar 

  64. Grigoryev EG (2009) Arab J Sci Eng 34(1):29

    CAS  Google Scholar 

  65. Mali VI, Anisnmov AG (2008) In: Proceedings of the international forum of nanotechnologies “Rusnanotech-08”, vol 2, Moscow (in Russian)

  66. Bilalov BA, Kardashova GD, Magomedova EK, Ahmedov RR (2010) In: Proceedings of the international scientific and technical conference INTERMATIC-2010, part 2, Moscow (in Russian)

  67. Bilalov BA, Gikitikchev MA, Magomedova EK et al (2010) World Sci Discov 6:191 (in Russian)

    Google Scholar 

  68. Kar S, Sarma ES, Somu VB (2008) Indian J Eng Mater 15:343

    CAS  Google Scholar 

  69. Abramova KB, Samujlov SD, Filin YA (1996) Russia Patent no 2063304 (in Russian)

  70. Krestyaninov DA, Bocharov JN, Samujlov SD (2008) In: Proceedings of the all-russian interuniversity scientific and technical conference for students and graduate students, part 2, St. Petersburg (in Russian)

  71. Samujlov SD (2002) Electro-physical method of briquetting of metallic chips. Synopsis of thesis of the dissertation, Physico-Technical Institute named after AF Ioffe RAS, St. Petersburg (in Russian)

  72. Krestyaninov DA (2011) Electric pulse-based technology of briquetting light-weight metallic scrap. Synopsis of thesis of the dissertation, St. Petersburg State Polytechnic University, St. Petersburg (in Russian)

  73. Lee WH, Hyun CY (2007) Appl Surf Sci 53:4649

    Article  ADS  Google Scholar 

  74. Lee WH, Park JW, Puleo DA, Kim J (2000) J Mater Sci 35:593. doi:10.1023/A:1004768125476

    Article  CAS  ADS  Google Scholar 

  75. Lee WH, Puleo DA (1999) J Mater Sci Lett 18:817

    Article  CAS  Google Scholar 

  76. Jung J, Kim K, Lee W (2001) US Patent no 7347967

  77. An YB, Oh NH, Chun YW et al (2006) Surf Coat Technol 200:4300

    Article  CAS  Google Scholar 

  78. An YB, Oh NH, Chun YW et al (2005) Scr Mater 53:905

    Article  CAS  Google Scholar 

  79. Lee WH (2006) Appl Surf Sci 252:4250

    Article  CAS  ADS  Google Scholar 

  80. Alp T, Can M, Al-Hassani STS (1993) Mater Manuf Process 8:285

    Article  CAS  Google Scholar 

  81. Persad C, Marcus HL, Bourell DL, Eliezer Z (1990) Controlling fundamentals in high-energy high-rate pulsed power materials processing of powered tungsten, titanium aluminides and copper–graphite composites. In: Final technical report, Center for Materials Science and Engineering, Texas University, Austin, TX

  82. Persad C, Peterson DR, Zowarka RC (1989) IEEE Trans Magn 8:285

    Google Scholar 

  83. Orth JE, Wheat HG (1997) Appl Compos Mater 4:305

    Article  CAS  ADS  Google Scholar 

  84. Wang MJ, Persad C, Eliezer Z, Weldon WF (1987) In: Gully JH (ed) Proceedings of the 3rd international conference on current collectors, paper 20, Austin, TX

  85. Eliezer Z, Wang MJ, Persad C, Gully J (1990) A novel processing technique for metall–ceramic composites. In: Final technical report, Center for Materials Science and Engineering & Center for Electromechanics, The University of Texas at Austin, p 167

  86. Knoess W, Schlemmer M (1996) US Patent no 5529746

  87. Scardi P, D’Incau M, Leoni M, Fais A (2010) Metall Mater Trans A 41:1196

    Article  Google Scholar 

  88. Fais A, Leoni M, Scardi P (2011) Metall Mater Trans A 27:1517

    Google Scholar 

  89. Oleszak D, Jaroszewicz J, Rosinski M, Michalski A (2002) Rudy Metal 47:432

    CAS  Google Scholar 

  90. Michalski A, Świderska-Środa A (1999) In: Proceedings of the 14th international symposium on plasma chemistry, vol 4. Academy of Sciences of the Czech Republic, Prague

  91. Rosinski M, Fortuna E, Michalski A (2007) Fusion Eng Des 82:2621

    Article  CAS  Google Scholar 

  92. Michalski A, Rosinski M (2008) J Am Ceram Soc 91:3560

    Article  CAS  Google Scholar 

  93. Nowosielski R, Pilarczyk W (2006) J Achiev Mater Manuf Eng 18(1–2):167

    Google Scholar 

  94. Nowosielski R, Pilarczyk W (2007) Arch Mater Sci Eng 28:246

    Google Scholar 

  95. Siemiazko D, Michalki A, Rosinski M (2008) In: Skorokhod V (ed) Proceedings of symposium I on “functional and structural ceramic and ceramic matrix composites (CCMC)”, Warsaw

  96. Michalski A, Rosiński M, Płocińska M, Szawłowski J (2011) Mater Sci Eng 18:1

    Google Scholar 

  97. Fortuna E, Rosiński M, Michalski A, Lisowski W (2007) FGM W–Cu composites and W–Cu/W joints fabrication route based on pulse plasma sintering (PPS) method. In: Annual report IPPLM, Warsaw University of Technology

  98. Fortuna E, Ludynski Z, Michalski A, Rosinski M (2006) W–Cu composites fabrication route based on powder metallurgy, high current electric impulse sintering, plasma spraying and electrocrystallization methods. In: Annual report IPPLM, Warsaw University of Technology, p 51

  99. Ciupiński L, Siemiaszko D, Rosiński M (2009) Adv Mater Res 59:120

    Article  Google Scholar 

  100. Fais A, Scardi P (2008) Z Kristallogr 27:37

    Article  Google Scholar 

  101. Raychenko OI, Popov VP, Derev’ynko OV et al (2002) J Mater Synth Process 10:345

    Article  CAS  Google Scholar 

  102. Okazaki K (1992) US Patent no 508488

  103. Jaroszewicz J, Michalski A (2006) J Eur Ceram Soc 26:2427

    Article  CAS  Google Scholar 

  104. Jaroszewic J, Nolf WD, Janssens K (2008) Anal Bioanal Chem 391:1129

    Article  Google Scholar 

  105. Maziarz W, Machalski A, Kurtyka P (2004) Rev Adv Mater Sci 8:158

    CAS  Google Scholar 

  106. Belyavin KE, Dudko AS, Maximenko PL, Min’ko DV (1995) Powder Metall 17:77 (in Russian)

    CAS  Google Scholar 

  107. Andreev MA, Belyavin KE, Vityaz’ PA (1989) USSR Patent no 4665116/30-14 (in Russia)

  108. Chudakov OP, Belyavin KE, Kaptsevich VM (1993) In: Theses of reports of international conference. New concepts in technology, manufacturing and application of implants in stomatology, Saratov (in Russian)

  109. Belyavin KE, Mazyuk VV, Min’ko DV (1996) In: Proceeding of the II Conference on Nomatech-96, Minsk, Byelorussia (in Russia)

  110. Ovchinnikov DV, Zhukovets AG, Zalutskiy IV, et al (1999) In: Proceeding of the actual problems of oncology and medical radiology, Minsk, Byelorussia (in Russian)

  111. Vityaz’ PA, Kaptsevich VM, Belyavin KE et al (1990) Powder Metall Met Ceram 29:527

    Article  Google Scholar 

  112. Krasnov AA, Kostrov KV, Silin AY, Samujlov SD (2010) Nonferr Met 1:80 (in Russian)

    Google Scholar 

  113. Bocharov YN, Krestyaniniov DA, Samujlov SD, Filin YA (2008) Sci Techn Sheets SPBSTU 70:125 (in Russian)

    Google Scholar 

  114. Sizonenko OV, Taftay EI, Lipyan EV, et al (2010) Regeneration of porous materials by the method of the high-voltage electric discharge in the liquid. Electrical contacts and electrodes. IPM National Academy of Ukraine, Kiev (in Russian)

  115. Calka A, Wexler D (2002) Nature 419:147

    Article  PubMed  CAS  ADS  Google Scholar 

  116. Calka A, Chowdhury AA, Konstantinov K (2012) J Alloys Compd 536:3

    Article  Google Scholar 

  117. Qiu J, Rock C, Shibata T, Okazaki K (1997) Mater Sci Forum 235–238:273

    Article  Google Scholar 

  118. Qiu J, Shibata T, Rock C, Okazaki K (1997) Mater Trans 38(3):226

    CAS  Google Scholar 

  119. Persad C, Lee SJ, Peterson DR, et al (1988) In: Burnham CG, Kane R (eds) Proceedings of the world congress on superconductivity, vol 8. World Scientific Publishers, Houston, TX

  120. Kim YW, Bourell DL, Persad C (1988) Metall Trans A 19(6):1634

    Article  Google Scholar 

Download references

Acknowledgements

The support of the Department of Science and Education of Russian Federation (Grant Contract 11.G34.31.0051) is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Olevsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yurlova, M.S., Demenyuk, V.D., Lebedeva, L.Y. et al. Electric pulse consolidation: an alternative to spark plasma sintering. J Mater Sci 49, 952–985 (2014). https://doi.org/10.1007/s10853-013-7805-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7805-8

Keywords

Navigation