Advertisement

Journal of Materials Science

, Volume 49, Issue 3, pp 952–985 | Cite as

Electric pulse consolidation: an alternative to spark plasma sintering

  • M. S. Yurlova
  • V. D. Demenyuk
  • L. Yu. Lebedeva
  • D. V. Dudina
  • E. G. Grigoryev
  • E. A. Olevsky
Review

Abstract

This article includes a comprehensive review of the methods of sintering of powder materials based on the use of electric current as a technological tool and presenting alternatives to the spark plasma sintering technique. The described sintering methods utilize electric discharges of several kilovolts (as opposed to low-voltage processing employed by spark plasma sintering), electric current densities exceeding 10 kA cm−2, and pressures of up to 10 GPa. In most cases, the powder to be consolidated is subjected to a single electric pulse of short duration (shorter than 0.1 s). The general term used to refer to these methods is electric pulse sintering (EPS). At present, the methods of EPS are rapidly advancing, which stimulates the development of their technical capabilities and equipment. This review provides a description of the facilities used by research groups in different countries. The EPS set-ups vary by the type of electric pulse generator, pressing equipment, geometrical features of the working chambers, die materials, as well as by other elements of design making each set-up unique among similar ones. In the paper, in addition to the practical technological aspects, the main physical processes occurring during EPS are described. The mechanisms of sintering as well as the influence of sintering parameters on the quality of the compacts are also discussed. Possibilities of using EPS for the production of high-strength materials, complex composite materials, nanostructured materials, and metal–ceramic composites are shown.

Keywords

Electric Discharge Spark Plasma Sinter Electric Pulse Briquette Capacitor Bank 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The support of the Department of Science and Education of Russian Federation (Grant Contract 11.G34.31.0051) is gratefully appreciated.

References

  1. 1.
    Abramova KB, Samujlov SD, Filin YA (1998) Nonferr Met 12:70 (in Russian)Google Scholar
  2. 2.
    Samujlov SD (2009) Ferrous Met 2:14–19 (in Russian)Google Scholar
  3. 3.
    Olevsky EA, Aleksandrova EV, Ilyina AM, Dudina DV, Novoselov AN, Pelve KY, Grigoryev EG (2013) Materials 6:4375CrossRefADSGoogle Scholar
  4. 4.
    Grasso S, Sakka Y, Maizza G (2009) Sci Technol Adv Mater 10:1Google Scholar
  5. 5.
    Schütte P, Moll H, Theisen W (2010) In: Proceedings of the PM2010 powder metallurgy world congress, European Powder Metallurgy Association, FlorenceGoogle Scholar
  6. 6.
    Schütte P, Moll H, Theisen W, Schmidt J (2011) In: Euro PM2011—sintering: spark plasma & microwave, European Powder Metallurgy Association, BarcelonaGoogle Scholar
  7. 7.
    Schütte P, Garcia J, Theisen W (2009) In: Proceedings Euro PM2009, European Powder Metallurgy Association, KopenhagenGoogle Scholar
  8. 8.
    Egan D, Melody S (2009) Met Powder Rep 64(6):10CrossRefGoogle Scholar
  9. 9.
    Ryabinina ON, Raichenko AI, Fuhchich OI et al (1977) Sov Powder Metall Met Ceram 16:188CrossRefGoogle Scholar
  10. 10.
    Orru R, Licheri R, Locci AM et al (2009) Mater Sci Eng R 63:127CrossRefGoogle Scholar
  11. 11.
    Hangria T, Galy J, Castro A (2009) Adv Eng Mater 8:615CrossRefGoogle Scholar
  12. 12.
    Saheb N, Iqbal Z, Khalil A et al (2012) J Nanomater 2012:1CrossRefGoogle Scholar
  13. 13.
    Skorov DM, Balankin SA, Bashlykov SS, Danilkin EA (1975) USSR Patent no 760570 (in Russia)Google Scholar
  14. 14.
    Clyens S, Al-Hassani STS, Johnson W (1975) British Patent no 45778Google Scholar
  15. 15.
    Cuppoletti J (2011) Nanocomposites with unique properties and applications in medicine and industry. InTech, CroatiaCrossRefGoogle Scholar
  16. 16.
    Olevsky E, Dudek HJ, Kaysser WA (1996) Acta Mater 44:715CrossRefGoogle Scholar
  17. 17.
    Rosinski M, Kruszewski M, Michalski A, Fortuna-Zalesna E (2011) Fusion Eng Des 86:2573CrossRefGoogle Scholar
  18. 18.
    Olevsky E, Froyen L (2006) Scr Mater 55:1175CrossRefGoogle Scholar
  19. 19.
    Olevsky E, Kandukuri S, Froyen L (2007) J Appl Phys 102:114913CrossRefADSGoogle Scholar
  20. 20.
    Olevsky E, Froyen L (2009) J Am Ceram Soc 92:S122CrossRefGoogle Scholar
  21. 21.
    Li W, Olevsky EA, McKittrick J, Maximenko AL, German RM (2012) J Mater Sci 47:7036. doi: 10.1007/s10853-012-6515-y CrossRefADSGoogle Scholar
  22. 22.
    Olevsky EA, Bradbury WL, Haines CD, Martin DG, Kapoor D (2012) J Am Ceram Soc 95:2406CrossRefGoogle Scholar
  23. 23.
    Olevsky EA, Garcia-Cardona C, Bradbury WL, Haines CD, Martin DG, Kapoor D (2012) J Am Ceram Soc 95:2414CrossRefGoogle Scholar
  24. 24.
    Olevsky E, Bogachev I, Maximenko A (2013) Scr Mater 69:112CrossRefGoogle Scholar
  25. 25.
    Giuntini D, Wei X, Li W, Ilyina A, Olevsky E (2013) Int J Refract Metals Hard Mater 41:501CrossRefGoogle Scholar
  26. 26.
    Giuntini D, Olevsky EA, Garcia-Cardona C, Maximenko AL, Yurlova MS, Haines CD, Martin DG, Kapoor D (2013) Materials 6:2612CrossRefADSGoogle Scholar
  27. 27.
    Anisnmov AG, Mali VI (2010) Phys Combust Explos 46:135 (in Russian)Google Scholar
  28. 28.
    Grigoryev EG (2009) Bull MSPU 1:52 (in Russian)Google Scholar
  29. 29.
    Maizza G, Tassinari A (2009) In: Proceedings of the COMSOL conference 2009, Milan, p 1Google Scholar
  30. 30.
    Grigoryev EG (2008) Bull Russ Acad Sci Phys 72:1278 (in Russian)CrossRefGoogle Scholar
  31. 31.
    Grigoryev EG, Olevsky EA (2012) Scr Mater 66:662CrossRefGoogle Scholar
  32. 32.
    Williams DJ, Johnson W (1982) Powder Metall 25:85Google Scholar
  33. 33.
    Al-Hassani STS (1979) Wire Ind 46:809Google Scholar
  34. 34.
    Davies TJ, Al-Hassani STS (1980) In: Le-May I (ed) Advances in materials technology in America, materials processing and performance, vol 2. American Society of Mechanical Engineers, FairfieldGoogle Scholar
  35. 35.
    Kim DK, Pak HR, Okazaki K (1988) Mater Sci Eng A 104:191CrossRefGoogle Scholar
  36. 36.
    Lee WH, Kim SJ, Lee WJ et al (2001) J Mater Sci 36:3573. doi: 10.1023/A:1017905305737 CrossRefADSGoogle Scholar
  37. 37.
    Clyens S, Al-Hassani STS (1976) Int J Mech Sci 18(1):37CrossRefGoogle Scholar
  38. 38.
    Zhang J, Zavaliangos A, Groza JR (2003) P/M Sci Technol Brief 5(4):5Google Scholar
  39. 39.
    Al-Hassani STS, Can M, Watson EJ (1986) J Comput Appl Math 15:175CrossRefzbMATHGoogle Scholar
  40. 40.
    Ervin DR, Bourell DL, Persad C, Rabenberg L (1988) Mater Sci Eng 102:25CrossRefGoogle Scholar
  41. 41.
    Fais A (2010) J Mater Process Technol 210:2223CrossRefGoogle Scholar
  42. 42.
    Fais A, Maizza G (2008) J Mater Process Technol 202:70CrossRefGoogle Scholar
  43. 43.
    Gorbachev LP, Grigoryev EG, Novikov SV (1989) Modeling of the process of coating deposition by electric pulse sintering. Preprint: MEPhI, Moscow (in Russian)Google Scholar
  44. 44.
    Belyavin KE, Min’ko DV, Kuznechik OO (2004) J Eng Phys Thermophys 77(3):136Google Scholar
  45. 45.
    Kim YH, Cho YJ, Lee CM et al (2007) Scr Mater 56:449CrossRefGoogle Scholar
  46. 46.
    Wu X, Guo J (2007) J Mater Sci 42:7787. doi: 10.1007/s10853-007-1646-2 CrossRefADSGoogle Scholar
  47. 47.
    Cho JY, Song GA, Choi HS et al (2012) J Alloys Compd 536:78CrossRefGoogle Scholar
  48. 48.
    Wu XY, Zhang W, Li DX, Guo JD (2007) Mater Sci Technol 23:627CrossRefGoogle Scholar
  49. 49.
    Fahmy Y, Conrad H (2001) Metall Mater Trans 3:811Google Scholar
  50. 50.
    Abramova KB, Bocharov YN, Samujlov SD, Scherbakov IP (2001) Tech Phys 71(4):122 (in Russian)Google Scholar
  51. 51.
    Zavodov NN, Kozlov AV, Luzganov SN et al (1999) Therm Phys High Temp 37:135 (in Russian)Google Scholar
  52. 52.
    Rock C, Qiu J, Okazaki K (1998) J Mater Sci 33:241. doi: 10.1023/A:1004386822343 CrossRefADSGoogle Scholar
  53. 53.
    Okazaki K (2000) Mater Sci Eng 287:189CrossRefGoogle Scholar
  54. 54.
    Al-Hassani STS (1982) In: Reports of union-wide conference 1981, Vysheishaya Shkola, MinskGoogle Scholar
  55. 55.
    Alitavoli M, Darvizeh A (2009) J Mater Process Technol 209:3542CrossRefGoogle Scholar
  56. 56.
    Grigoryev EG (2011) In: Cuppolrtti J (ed) Nanocomposites with unique properties and applications in medicine and industry. InTech, Croatia, p 345Google Scholar
  57. 57.
    Kriegsmann GA (2008) J Appl Math 68:1503MathSciNetzbMATHGoogle Scholar
  58. 58.
    An YB, Oh NH, Chun YW et al (2004) Mater Lett 59:2178CrossRefGoogle Scholar
  59. 59.
    Grigoryev EG, Mitrofanov AV, Rosliakov AV (2000) In: Proceedings of the scientific session of MEPhI, part 9, Moscow (in Russian)Google Scholar
  60. 60.
    Belyavin KE (2000) Theoretical and technological bases of electric pulse sintering of refractory metal powders and application of the technology in industrial manufacturing of porous metallic parts. Synopsis of thesis of the dissertation, Research Institute of Powder Metallurgy with pilot production, Minsk (in Russian)Google Scholar
  61. 61.
    Grigoryev EG (2008) Bull MSPU 1:85 (in Russian)Google Scholar
  62. 62.
    Grigoriev EG, Rosliakov AV (2007) J Mater Process Technol 191:182CrossRefGoogle Scholar
  63. 63.
    Popov VP, Grigor’ev EG, Novikov SV et al (1996) Powder Metall Met Ceram 35:32CrossRefGoogle Scholar
  64. 64.
    Grigoryev EG (2009) Arab J Sci Eng 34(1):29Google Scholar
  65. 65.
    Mali VI, Anisnmov AG (2008) In: Proceedings of the international forum of nanotechnologies “Rusnanotech-08”, vol 2, Moscow (in Russian)Google Scholar
  66. 66.
    Bilalov BA, Kardashova GD, Magomedova EK, Ahmedov RR (2010) In: Proceedings of the international scientific and technical conference INTERMATIC-2010, part 2, Moscow (in Russian)Google Scholar
  67. 67.
    Bilalov BA, Gikitikchev MA, Magomedova EK et al (2010) World Sci Discov 6:191 (in Russian)Google Scholar
  68. 68.
    Kar S, Sarma ES, Somu VB (2008) Indian J Eng Mater 15:343Google Scholar
  69. 69.
    Abramova KB, Samujlov SD, Filin YA (1996) Russia Patent no 2063304 (in Russian)Google Scholar
  70. 70.
    Krestyaninov DA, Bocharov JN, Samujlov SD (2008) In: Proceedings of the all-russian interuniversity scientific and technical conference for students and graduate students, part 2, St. Petersburg (in Russian)Google Scholar
  71. 71.
    Samujlov SD (2002) Electro-physical method of briquetting of metallic chips. Synopsis of thesis of the dissertation, Physico-Technical Institute named after AF Ioffe RAS, St. Petersburg (in Russian)Google Scholar
  72. 72.
    Krestyaninov DA (2011) Electric pulse-based technology of briquetting light-weight metallic scrap. Synopsis of thesis of the dissertation, St. Petersburg State Polytechnic University, St. Petersburg (in Russian)Google Scholar
  73. 73.
    Lee WH, Hyun CY (2007) Appl Surf Sci 53:4649CrossRefADSGoogle Scholar
  74. 74.
    Lee WH, Park JW, Puleo DA, Kim J (2000) J Mater Sci 35:593. doi: 10.1023/A:1004768125476 CrossRefADSGoogle Scholar
  75. 75.
    Lee WH, Puleo DA (1999) J Mater Sci Lett 18:817CrossRefGoogle Scholar
  76. 76.
    Jung J, Kim K, Lee W (2001) US Patent no 7347967Google Scholar
  77. 77.
    An YB, Oh NH, Chun YW et al (2006) Surf Coat Technol 200:4300CrossRefGoogle Scholar
  78. 78.
    An YB, Oh NH, Chun YW et al (2005) Scr Mater 53:905CrossRefGoogle Scholar
  79. 79.
    Lee WH (2006) Appl Surf Sci 252:4250CrossRefADSGoogle Scholar
  80. 80.
    Alp T, Can M, Al-Hassani STS (1993) Mater Manuf Process 8:285CrossRefGoogle Scholar
  81. 81.
    Persad C, Marcus HL, Bourell DL, Eliezer Z (1990) Controlling fundamentals in high-energy high-rate pulsed power materials processing of powered tungsten, titanium aluminides and copper–graphite composites. In: Final technical report, Center for Materials Science and Engineering, Texas University, Austin, TXGoogle Scholar
  82. 82.
    Persad C, Peterson DR, Zowarka RC (1989) IEEE Trans Magn 8:285Google Scholar
  83. 83.
    Orth JE, Wheat HG (1997) Appl Compos Mater 4:305CrossRefADSGoogle Scholar
  84. 84.
    Wang MJ, Persad C, Eliezer Z, Weldon WF (1987) In: Gully JH (ed) Proceedings of the 3rd international conference on current collectors, paper 20, Austin, TXGoogle Scholar
  85. 85.
    Eliezer Z, Wang MJ, Persad C, Gully J (1990) A novel processing technique for metall–ceramic composites. In: Final technical report, Center for Materials Science and Engineering & Center for Electromechanics, The University of Texas at Austin, p 167Google Scholar
  86. 86.
    Knoess W, Schlemmer M (1996) US Patent no 5529746Google Scholar
  87. 87.
    Scardi P, D’Incau M, Leoni M, Fais A (2010) Metall Mater Trans A 41:1196CrossRefGoogle Scholar
  88. 88.
    Fais A, Leoni M, Scardi P (2011) Metall Mater Trans A 27:1517Google Scholar
  89. 89.
    Oleszak D, Jaroszewicz J, Rosinski M, Michalski A (2002) Rudy Metal 47:432Google Scholar
  90. 90.
    Michalski A, Świderska-Środa A (1999) In: Proceedings of the 14th international symposium on plasma chemistry, vol 4. Academy of Sciences of the Czech Republic, PragueGoogle Scholar
  91. 91.
    Rosinski M, Fortuna E, Michalski A (2007) Fusion Eng Des 82:2621CrossRefGoogle Scholar
  92. 92.
    Michalski A, Rosinski M (2008) J Am Ceram Soc 91:3560CrossRefGoogle Scholar
  93. 93.
    Nowosielski R, Pilarczyk W (2006) J Achiev Mater Manuf Eng 18(1–2):167Google Scholar
  94. 94.
    Nowosielski R, Pilarczyk W (2007) Arch Mater Sci Eng 28:246Google Scholar
  95. 95.
    Siemiazko D, Michalki A, Rosinski M (2008) In: Skorokhod V (ed) Proceedings of symposium I on “functional and structural ceramic and ceramic matrix composites (CCMC)”, WarsawGoogle Scholar
  96. 96.
    Michalski A, Rosiński M, Płocińska M, Szawłowski J (2011) Mater Sci Eng 18:1Google Scholar
  97. 97.
    Fortuna E, Rosiński M, Michalski A, Lisowski W (2007) FGM W–Cu composites and W–Cu/W joints fabrication route based on pulse plasma sintering (PPS) method. In: Annual report IPPLM, Warsaw University of TechnologyGoogle Scholar
  98. 98.
    Fortuna E, Ludynski Z, Michalski A, Rosinski M (2006) W–Cu composites fabrication route based on powder metallurgy, high current electric impulse sintering, plasma spraying and electrocrystallization methods. In: Annual report IPPLM, Warsaw University of Technology, p 51Google Scholar
  99. 99.
    Ciupiński L, Siemiaszko D, Rosiński M (2009) Adv Mater Res 59:120CrossRefGoogle Scholar
  100. 100.
    Fais A, Scardi P (2008) Z Kristallogr 27:37CrossRefGoogle Scholar
  101. 101.
    Raychenko OI, Popov VP, Derev’ynko OV et al (2002) J Mater Synth Process 10:345CrossRefGoogle Scholar
  102. 102.
    Okazaki K (1992) US Patent no 508488Google Scholar
  103. 103.
    Jaroszewicz J, Michalski A (2006) J Eur Ceram Soc 26:2427CrossRefGoogle Scholar
  104. 104.
    Jaroszewic J, Nolf WD, Janssens K (2008) Anal Bioanal Chem 391:1129CrossRefGoogle Scholar
  105. 105.
    Maziarz W, Machalski A, Kurtyka P (2004) Rev Adv Mater Sci 8:158Google Scholar
  106. 106.
    Belyavin KE, Dudko AS, Maximenko PL, Min’ko DV (1995) Powder Metall 17:77 (in Russian)Google Scholar
  107. 107.
    Andreev MA, Belyavin KE, Vityaz’ PA (1989) USSR Patent no 4665116/30-14 (in Russia)Google Scholar
  108. 108.
    Chudakov OP, Belyavin KE, Kaptsevich VM (1993) In: Theses of reports of international conference. New concepts in technology, manufacturing and application of implants in stomatology, Saratov (in Russian)Google Scholar
  109. 109.
    Belyavin KE, Mazyuk VV, Min’ko DV (1996) In: Proceeding of the II Conference on Nomatech-96, Minsk, Byelorussia (in Russia)Google Scholar
  110. 110.
    Ovchinnikov DV, Zhukovets AG, Zalutskiy IV, et al (1999) In: Proceeding of the actual problems of oncology and medical radiology, Minsk, Byelorussia (in Russian)Google Scholar
  111. 111.
    Vityaz’ PA, Kaptsevich VM, Belyavin KE et al (1990) Powder Metall Met Ceram 29:527CrossRefGoogle Scholar
  112. 112.
    Krasnov AA, Kostrov KV, Silin AY, Samujlov SD (2010) Nonferr Met 1:80 (in Russian)Google Scholar
  113. 113.
    Bocharov YN, Krestyaniniov DA, Samujlov SD, Filin YA (2008) Sci Techn Sheets SPBSTU 70:125 (in Russian)Google Scholar
  114. 114.
    Sizonenko OV, Taftay EI, Lipyan EV, et al (2010) Regeneration of porous materials by the method of the high-voltage electric discharge in the liquid. Electrical contacts and electrodes. IPM National Academy of Ukraine, Kiev (in Russian)Google Scholar
  115. 115.
    Calka A, Wexler D (2002) Nature 419:147PubMedCrossRefADSGoogle Scholar
  116. 116.
    Calka A, Chowdhury AA, Konstantinov K (2012) J Alloys Compd 536:3CrossRefGoogle Scholar
  117. 117.
    Qiu J, Rock C, Shibata T, Okazaki K (1997) Mater Sci Forum 235–238:273CrossRefGoogle Scholar
  118. 118.
    Qiu J, Shibata T, Rock C, Okazaki K (1997) Mater Trans 38(3):226Google Scholar
  119. 119.
    Persad C, Lee SJ, Peterson DR, et al (1988) In: Burnham CG, Kane R (eds) Proceedings of the world congress on superconductivity, vol 8. World Scientific Publishers, Houston, TXGoogle Scholar
  120. 120.
    Kim YW, Bourell DL, Persad C (1988) Metall Trans A 19(6):1634CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • M. S. Yurlova
    • 1
  • V. D. Demenyuk
    • 1
  • L. Yu. Lebedeva
    • 1
  • D. V. Dudina
    • 1
  • E. G. Grigoryev
    • 1
  • E. A. Olevsky
    • 1
    • 2
  1. 1.Key Laboratory for Electromagnetic Field Assisted Processing of Novel MaterialsMoscow Engineering Physics UniversityMoscowRussia
  2. 2.Powder Technology LaboratorySan Diego State UniversitySan DiegoUSA

Personalised recommendations