Skip to main content
Log in

Densification mechanisms of spark plasma sintering: multi-step pressure dilatometry

  • Sintering 2011
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effects of electrical current and mechanical pressure on the densification of spherical copper powder during spark plasma sintering (SPS) are examined. A novel multi-step pressure dilatometry method is introduced to compare the constitutive behavior of the copper powder under nearly equivalent current-insulated and current-assisted SPS process conditions. The strain rate sensitivity agrees with that predicted for a dislocation climb-controlled creep densification mechanism for both processing setups. Accelerated densification rate leading to a higher final relative density is observed for the current-assisted SPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Presently, Fuji Electrical Industrial Co., Ltd. Japan.

References

  1. Munir ZA, Anselmi-tamburini U, Ohyanagi M (2006) J Mater Sci 41:763. doi:10.1007/s10853-006-6555-2763

    Article  CAS  Google Scholar 

  2. Shon IJ, Munir ZA (1995) Mater Sci Eng A 202:256

    Article  Google Scholar 

  3. Xie G, Ohashi O, Song M, Mitsuishi K, Furuya K (2005) Appl Surf Sci 241:102

    Article  CAS  Google Scholar 

  4. Goldberger WM, Merkle B, Boss D (1994) Adv Powder Metall Part Mater 6:91

    Google Scholar 

  5. Vanmeensel K, Huang SH, Laptev A, Vleugels J, Van Der Biest O (2009) Modeling of field assisted sintering technology (FAST) and its application to electro-conductive systems, advanced processing and manufacturing technologies for structural and multifunctional materials II: ceramic engineering and science proceedings. Wiley, Hoboken, p 109

    Google Scholar 

  6. Tokita M (1999) Mater Sci Forum 83:308

    Google Scholar 

  7. Chaim R (2007) Mater Sci Eng A 443:25

    Article  Google Scholar 

  8. Ichikawa K, Murakami T, Nakayama Y, Miyamato S, Tokita M (2003) Mater Sci Forum 426:2375

    Article  Google Scholar 

  9. Chaim R, Shen Z, Nygren M (2004) J Mater Res 19:2527

    Article  CAS  Google Scholar 

  10. Khaleghi E, Lin YS, Olevsky EA, Meyers M (2010) Scripta Mater 63:577

    Article  CAS  Google Scholar 

  11. Bradbury W, Olevsky E (2011) Scripta Mater 63:77

    Google Scholar 

  12. Anselmi-Tamburini U, Garay JE, Munir ZA (2006) Scripta Mater 54:823

    Article  CAS  Google Scholar 

  13. Tokita M (1997) New Ceram 10:43 (in Japanese)

    CAS  Google Scholar 

  14. Risbud SH, Shan CH, Mmukherjee AK, Kim MJ, Bow JS, Holl RA (1995) J Mater Res 10:237

    Article  CAS  Google Scholar 

  15. Groza JR, Zavaliangos A (2000) Mater Sci Eng A 287:171

    Article  Google Scholar 

  16. Chaim R, Margulis M (2005) Mater Sci Eng A 407:180

    Article  Google Scholar 

  17. Khor KA, Chen XJ, Chan SH, Yu LG (2004) Mater Sci Eng A 366:120

    Article  Google Scholar 

  18. Olevsky EA, Froyen L (2006) Scripta Mater 55:1175

    Article  CAS  Google Scholar 

  19. Olevsky EA, Kandukuri S, Froyen L (2007) J Appl Phys 102:114913

    Article  Google Scholar 

  20. Olevsky EA, Kandukuri S, Froyen L (2008) Key Eng Mater 368–372:1580

    Article  Google Scholar 

  21. Olevsky EA, Froyen L (2009) J Am Ceram Soc 92:S122

    Article  CAS  Google Scholar 

  22. Bernard-Grainger G, Guizard C (2007) Acta Mater 55:3493

    Article  Google Scholar 

  23. Langer J, Hoffmann MJ, Guillon O (2011) J Am Ceram Soc 94:2344

    Article  CAS  Google Scholar 

  24. Langer J, Hoffmann MJ, Guillon O (2009) Acta Mater 57:5454

    Article  CAS  Google Scholar 

  25. Langer J, Hoffmann MJ, Guillon O (2011) J Am Ceram Soc 94:131

    Google Scholar 

  26. Frei JM, Anselmi-Amburini U, Munir ZA (2007) J Appl Phys 101:114914

    Article  Google Scholar 

  27. Zhang ZH, Wang FC, Wang L, Li SK (2008) Mater Sci Eng A 476:201

    Article  Google Scholar 

  28. Reis J, Chaim R (2008) Mater Sci Eng A 49:356

    Google Scholar 

  29. Yanagisawa O, Matsugi K, Hatayama T (1997) Mater Trans JIM 38:240

    CAS  Google Scholar 

  30. Ohashi O, Yoshioka T, Nitta I, Hasegawa H, Sugii S (1999) J Jpn Inst Met 63:983

    CAS  Google Scholar 

  31. Song XY, Liu XM, Zhang JX (2005) Sci China Ser E 48:258

    Article  CAS  Google Scholar 

  32. Wang L, Wang F, Zhang Z, Liao Q (2007) Mater Eng 36:150

    CAS  Google Scholar 

  33. Zhang Z, Wang F, Wang L, Li S, Osamu S (2008) Mater Lett 62:3987

    Article  CAS  Google Scholar 

  34. Guyot P, Rat V, Coudert JF, Jay F, Maitre A, Pradeilles N (2012) J Phys D 45:092001

    Article  Google Scholar 

  35. Wilkson DS, Ashby MF (1975) Acta Mater 23:1277

    Article  Google Scholar 

  36. Johnson KL (1970) J Mech Phys Solids 18:115

    Article  Google Scholar 

  37. Nieh TG, Wadsworth J, Sherby OD (1997) Superplasticity in metals and ceramics. Cambridge University Press, Cambridge, p 32

    Book  Google Scholar 

  38. Mukherjee AK, Bird JE, Dorn JE (1969) Trans ASM 62:155

    CAS  Google Scholar 

  39. Nabarro FRN (1967) Phil Mag A 16:231

    Article  CAS  Google Scholar 

  40. Herring C (1951) J Appl Phys 21:437

    Article  Google Scholar 

  41. Gifkins RC (1976) Metall Trans 7A:1225

    CAS  Google Scholar 

  42. Weertman J (1968) Trans ASM 61:681

    CAS  Google Scholar 

  43. Weertman J (1957) J Appl Phys 28:1185

    Article  Google Scholar 

  44. Olevsky EA (1998) Mater Sci Eng R 23:41

    Article  Google Scholar 

  45. Zhang ZH, Wang FC, Lee SK, Liu Y (2009) Mater Sci Eng A 523:134

    Article  Google Scholar 

Download references

Acknowledgements

The support of the US Army ARDEC, Picatinny Arsenal (Contract Award #W15QKN-09C-0128) is gratefully appreciated. The support of the National Science Foundation, Division of Civil, Mechanical, and Manufacturing Innovations (Grant CMMI- 0758232) is gratefully appreciated. The authors are grateful to Dr. Steve Barlow who assisted in SEM work, at the San Diego State University Electron Microscopy Facility acquired by NSF instrumentation grant DBI-0959908. The support of the Department of Science and Education of Russian Federation (Grant Contract 11.G34.31.0051) is also gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Olevsky, E.A., McKittrick, J. et al. Densification mechanisms of spark plasma sintering: multi-step pressure dilatometry. J Mater Sci 47, 7036–7046 (2012). https://doi.org/10.1007/s10853-012-6515-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6515-y

Keywords

Navigation