Skip to main content
Log in

Developmental and physiological properties of Pyropia dentata (Bangiales, Rhodophyta) conchocelis in culture

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Pyropia dentata is a promising species for aquaculture in South China. To develop an efficient protocol for seedling culture, the growth, development, and physiological changes of P. dentata conchocelis were investigated under different temperatures, irradiances, photoperiods, and salinity. After 25 days, conchosporangia formation at 28 °C was 5–7-fold of that at 25 and 31 °C. The percentage of conchosporangia increased as day length increased from 8 to 12 h and then decreased sharply under day length ≥14 h, with no conchosporangia observed under 24L:0D. By contrast, long day length (≥14 h) and lower temperature (≤25 °C) favored the vegetative growth of conchocelis. Conchosporangia formation peaked at 28 °C, 12L:12D, and 40–60 μmol photons m−2 s−1. The highest F v /F m , P n , and P n /R d also occurred at 28 °C and/or 12L:12D, which might provide energy for conchosporangia formation. Total soluble proteins (TSPs) content decreased while relative growth rate increased as irradiance and day length increased. Increasing irradiance and day length, and at temperatures of 31 °C caused a reduction in phycoerythrin and chlorophyll a content. However, allophycocyanin content increased at 31 °C and the content of phycocyanin, carotenoids, and TSPs remained steady from 25 to 31 °C. Growth, development, P n , content of TSPs and pigments were similar at 25–40 ppt. F v /F m decreased and R d increased significantly at salinities ≥35 ppt. These findings provide informative data on the mechanisms of Pyropia conchocelis development, and help establish an efficient seedling culture protocol for this P. dentata strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Blouin NA, Brodie JA, Grossman AC, Xu P, Brawley SH (2011) Porphyra: a marine crop shaped by stress. Trends Plant Sci 16:29–37

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chan CX, Blouin NA, Zhuang Y et al (2012) Porphyra (Bangiophyceae) transcriptomes provide insights into red algal development and metabolism. J Phycol 48:1328–1342

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Huang Z, Zhu J, Lu Q, Chen W (2015) Effect of environmental factor on conchospore releasing, attachment and germination in Pyropia dentata. South China Fish Sci 11(1):55–61

    Google Scholar 

  • Choi S, Hwang MS, Im S, Kim N, Jeong W, Park E, Gong Y, Choi D (2013) Transcriptome sequencing and comparative analysis of the gametophyte thalli of Pyropia tenerea under normal and high temperature conditions. J Appl Phycol 25:1237–1246

    Article  CAS  Google Scholar 

  • Dawczynski C, Schubert R, Jahreis G (2007) Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem 103:891–899

    Article  CAS  Google Scholar 

  • Dongsansuk A, Lutz C, Neuner G (2013) Effects of temperature and irradiance on quantum yield of PSII photochemistry and xanthophyll cycle in a tropical and temperate species. Photosynthetica 51:13–21

    Article  CAS  Google Scholar 

  • Drew KM (1949) Conchocelis-phase in the life-history of Porphyra umbilicalis (L.) Kütz. Nature 164:748–749

    Article  Google Scholar 

  • Dring MJ (1967) Effects of daylength on growth and reproduction of the conchocelis-phase of Porphyra tenerea. J Mar Biol Ass UK 47:501–510

    Article  Google Scholar 

  • Green LA, Neefus CD (2015) Effects of temperature, light level, photoperiod, and ammonium concentration on Pyropia leucosticta (Bangiales, Rhodophyta) from the Northwest Atlantic. J Appl Phycol 27:1253–1261

    Article  CAS  Google Scholar 

  • He P, Yarish C (2006) The developmental regulation of mass cultures of free-living conchocelis for commercial net seeding of Porphyra leucosticta from Northeast America. Aquaculture 257:373–381

    Article  Google Scholar 

  • Im S, Choi S, Hwang MS, Park E, Jeong W, Choi D (2015) De novo assembly of transcriptome from the gametophyte of the marine red algae Pyropia seriata and identification of abiotic stress response genes. J Appl Phycol 27:1343–1353

    Article  CAS  Google Scholar 

  • Jiang H, Wang Y, Zhu J (2013) Comparative studies on pigments and photosynthetic characteristics of sexually different vegetative and reproductive tissues of Porphyra katadai var. hemiphylla (Bangiales, Rhodophyta). J Appl Phycol 25:73–79

    Article  CAS  Google Scholar 

  • Katz S, Kizner Z, Dubinsky Z, Friedlander M (2000) Response of Porphyra linearis (Rhodophyta) to environmental factors under controlled culture conditions. J Appl Phycol 12:535–542

    Article  Google Scholar 

  • Kazlowska K, Lin H, Chang S, Tsai G (2013) In vitro and in vivo anticancer effects of sterol fraction from red algae Porphyra dentata. Evid-Based Comp Alternat, Med. doi:10.1155/2013/493869

  • Kim N (1999) Culture studies of Porphyra dentata and P. pseudolinearis (Bangiales, Rhodophyta), two dioecious species from Korea. Hydrobiologia 398(399):127–135

    Google Scholar 

  • Kim N (2010) Present and future of the seaweed cultivation in Korea. Seaweed Res 22:22–34

    Google Scholar 

  • Kim N (2011) Culture study on the hybrid by interspecific crossing between Porphyra pseudolinearis and P. dentata (Bangiales, Rhodophyta), two dioecious species in culture. Algae 26:79–86

    Article  Google Scholar 

  • Korbee N, Huovinen P, Figueroa FL, Aguilera J, Karsten U (2005) Availability of ammonium influences photosynthesis and the accumulation of mycosporine-like amino acids in two Porphyra species (Bangiales, Rhodophyta). Mar Biol 146:645–654

  • Kursar TA, van der Meer J, Alberte RS (1983) Light-harvesting system of the red alga Gracilaria tikvahiae. Plant Physiol 73:353–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Yang L, He P (2011) Formation and growth of free-living conchosporangia of Porphyra yezoensis: effects of photoperiod, temperature and light intensity. Aquacult Res 42:1079–1086

    Article  Google Scholar 

  • López-Vivas JM, Riosmena-Rodríguez R, Jiménez-González de la Llave AA, Pacheco-Ruíz I, Yarish C (2015) Growth and reproductive responses of the conchocelis phase of Pyropia hollenbergii (Bangiales, Rhodophyta) to light and temperature. J Appl Phycol 27:1561–1570

    Article  Google Scholar 

  • Lu S, Yarish C (2011) Interaction of photoperiod and temperature in the development of conchocelis of Porphyra purpurea (Rhodophyta: Bangiales). J Appl Phycol 23:89–96

    Article  Google Scholar 

  • Merrill JE (1993) Development of nori markets in the western world. J Appl Phycol 5:149–154

    Article  Google Scholar 

  • Nakamura Y, Sasaki N, Kobayashi M, Ojima N, Yasuike M, Shigenobu Y, Satomi M, Fukuma Y, Shiwaku K, Tsujimoto A, Kobayashi T, Nakayama I, Ito F, Nakajima K, Sano M, Wada T, Kuhara S, Inouye K, Gojobori T, Ikeo K (2013) The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis). PLoS One 8(3):e5712

    Google Scholar 

  • Nelson WA, Brodie J, Guiry MD (1999) Terminology used to describe reproduction and life history stages in the genus Porphyra (Bangiales, Rhodophyta). J Appl Phycol 11:407–410

    Article  Google Scholar 

  • Niu J, Gao S, Luo Y, Ye Y, Wang G, Hu S (2011) The analysis of the low coverage Porphyra yezoensis draft genome. Mar Sci 35(6):76–81

    CAS  Google Scholar 

  • Niwa K, Iida S, Kato A, Kawai H, Kikuchi N, Kobiyama A, Aruga Y (2009) Genetic diversity and introgression in two cultivated species (Porphyra yezoensis and Porphyra tenera) and closely related wild species of Porphyra (Bangiales, Rhodophyta). J Phycol 45:493–502

    Article  CAS  PubMed  Google Scholar 

  • Noda H (1993) Health benefits and nutritional properties of nori. J Appl Phycol 5:255–258

    Article  Google Scholar 

  • Notoya M, Kikuchi N, Matsuo M, Aruga Y, Miura A (1993) Culture studies of four species of Porphyra (Rhodophyta) from Japan. Nippon Suisan Gakkaishi 59:431–436

    Article  Google Scholar 

  • Pereira R, Yarish C (2010) The role of Porphyra in sustainable culture systems: physiology and applications. In: Seckbach J, Einav R, Israel A (eds) Seaweeds and their Role in Globally Changing Environments. Springer, Dordrecht, pp 339–354

    Chapter  Google Scholar 

  • Porra RJ (2002) The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth Res 73:149–156

    Article  CAS  PubMed  Google Scholar 

  • Read S, Northcote D (1981) Minimization of variation in the response to different proteins of the Coomassie blue G dye-binding assay for protein. Anal Biochem 116:53–64

    Article  CAS  PubMed  Google Scholar 

  • Sahoo D, Baweja P, Kushwah N (2006) Developmental studies in Porphyra vietnamensis: a high-temperature resistant species from the Indian coast. J Appl Phycol 18:279–286

    Article  Google Scholar 

  • Sahoo D, Tang X, Yarish C (2002) Porphyra—the economic seaweed as a new experimental system. Curr Sci 83:1313–1316

    Google Scholar 

  • Sampath-Wiley P, Neefus CD (2007) An improved method for estimating R-phycoerythrin and R-phycocyanin contents from crude aqueous extracts of Porphyra (Bangiales, Rhodophyta). J Appl Phycol 19:123–129

  • Shen S, Dai J, Zhou L (2000) Ultrastructure of vegetative and reproductive conchocelis of Porphyra yezoensis. Mar Sci Bull 19:38–44

    Google Scholar 

  • Smith CM, Satoh K, Fork DC (1986) The effects of osmotic tissue dehydration and air drying on morphology and energy transfer in two species of Porphyra. Plant Physiol 80:843–847

  • Sutherland JE, Lindstrom SC, Nelson WA, Brodie J, Lynch MDJ, Hwang MS, Choi HG, Miyata M, Kikuchi N, Oliveira MC, Farr T, Neefus C, Mols-Mortensen A, Milstein D, Müller KM (2011) A new look at an ancient order: generic revision of the Bangiales (Rhodophyta). J Phycol 47:1131–1151

    Article  PubMed  Google Scholar 

  • Tang X, Fei X (1997) Relationship between light, temperature and growth, development of conchocelis of Porphyra haitanensis. Oceanol Limnol Sinica 28(5):475–482

    Google Scholar 

  • Tseng CK (1981) Commercial cultivation. In: Lobban CS, Wynne MJ (eds) The Biology of Seaweeds. Blackwell Scientific Publications, Oxford, pp 680–725

    Google Scholar 

  • Tujii K, Iwao T, Nakagawa Y, Seki T (1981) Effect of dietary taurine on bile acid metabolism in hypercholesterolemic rats. Sulfur Amino Acids 4:111–119

    Google Scholar 

  • Ueda S (1973) Textbook of cultivation of Porphyra. National Association of Nori and Shellfish Fisheries Cooperatives

  • Varela-Alvarez E, Stengel DB, Guiry MD (2004) The use of image processing in assessing conchocelis growth and conchospore production in Porphyra linearis. Phycologia 43:282–287

    Article  Google Scholar 

  • Wang W, Sun X, Liu F, Liang Z, Zhang J, Wang F (2016) Effect of abiotic stress on the gameophyte of Pyropia katadae var. hemiphylla (Bangiales, Rhodophyta). J Appl Phycol 28:469–479

    Article  CAS  Google Scholar 

  • Wang WJ, Zhu JY, Xu P, Xu JR, Lin XZ, Huang CK, Song W, Peng G, Wang GC (2008) Characterization of the life history of Bangia fuscopurpurea (Bangiaceae, Rhodophyta) in connection with its artificial cultivation in China. Aquaculture 278:101–109

    Article  CAS  Google Scholar 

  • Wang X, Zhao P, Luo Q, Yan X, Xu J, Chen J, Chen H (2014) Metabolite changes during the life history of Porphyra haitanensis. Plant Biol doi:10.1111/plb.12273

  • Watanabe Y, Nishihara GN, Tokunaga S, Terada R (2014) Effect of irradiance and temperature on the photosynthesis of a cultivated red alga, Pyropia tenera (= Porphyra tenera), at the southern limit of distribution in Japan. Phycol Res 62:187–196

    Article  CAS  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  • Wiencke C, Läuchli A (1980) Growth, cell volume, and fine structure of Porphyra umbilicalis in relation to osmotic tolerance. Planta 150:303–311

  • Xie C, Li B, Ji D, Chen C (2013) Characterization of the global transcriptome for Pyropia haitanensis (Bangiales, Rhodophyta) and development of cSSR markers. BMC Genomics 14:107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Chen W, Song Z, Jiang H, Zhu J, Lu Q (2013) Effects of different culture conditions on growth and physiological response of Porphyra dentata thallus. J Fish China 37(9):1319–1327

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Special Scientific Research Funds for Central Non-profit Institutes, Chinese Academy of Fishery Sciences (No. 2015A02), the Special Scientific Research Funds for Central Non-profit Institutes, Yellow Sea Fisheries Research Institute (No. 20603022013023), the National Natural Foundation of China (No. 41176153), and the National Science and Technology Infrastructure Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-jun Wang or Wei-zhou Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Zh., Wang, Wj., Sun, Xt. et al. Developmental and physiological properties of Pyropia dentata (Bangiales, Rhodophyta) conchocelis in culture. J Appl Phycol 28, 3435–3445 (2016). https://doi.org/10.1007/s10811-016-0877-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-0877-5

Keywords

Navigation