Skip to main content
Log in

Physiological and biochemical responses to light and temperature stress in free-living conchocelis of Neopyropia katadae (Bangiales, Rhodophyta)

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Neopyropia katadae is one of the important economic seaweeds in China. A mass of free-living conchocelis is needed in the commercial cultivation of N. katadae. This study aimed to clarify the optimum growth conditions of the free-living conchocelis of N. katadae and its photosynthetic and biochemical response to different temperatures and irradiances, so as to provide the theoretical basis for the formulation of cultivation strategy of free-living conchocelis. The free-living conchocelis exhibited higher growth rate (RGR), net photosynthetic rates (PN), maximum relative electron transport rates (rETRmax), and maximal photochemical efficiency of PS II (Fv/Fm) at 16–20 °C and 60–80 μmol photons m−2 s−1. Light saturation point of the free-living conchocelis is 60.3–85.2 μmol photons m−2 s−1, and low light compensation point is 6.1–13.7 μmol photons m−2 s−1 in the range of 16–25 °C. The greatly reduced values of RGR, PN, Fv/Fm, rETRmax, Y(II), and Ek (minimum saturating irradiance) indicated that damage to the photosynthetic apparatus and photoinhibition occurred in the free-living conchocelis of N. katadae under high temperature of 23–25 °C and high light intensity (100–200 μmol photons m−2 s−1). High values of Fv/Fm and α (initial slope of the RLC) were both observed at low light intensities (10–80 μmol photons m−2 s−1), suggesting that this conchocelis is low light adapted. The content of glutathione, proline, peroxidase, ascorbate peroxidase (APX), and abscisic acid (ABA) all presented at high levels at 10 μmol photons m−2 s−1, indicating that these compounds probably play an important role under low light stress in the free-living conchocelis. High temperature (24 °C) and high light intensities (100–150 μmol photons m−2 s−1) both led to reactive oxygen species accumulation. Compared to the control, the activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione reductase) were substantially enhanced at 24 °C and 100 μmol photons m−2 s−1, and ascorbic acid content in 24 °C group was relatively higher, suggesting that these compounds probably play a crucial role in defensive reactions against high-temperature-induced or high light-induced oxidative stress in the conchocelis. Based on these results, it was proposed that the optimal cultivation conditions for free-living conchocelis of N. katadae were at 16–20 °C and 60–80 μmol photons m−2 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated in the present study are available from the corresponding author on reasonable request.

References

  • Anjum NA, Sharma P, Gill SS, Hasanuzzaman M, Khan EA, Kachhap K, Mohamed AA, Thangavel P, Devi GD, Vasudhevan P, Sofo A, Khan NA, Misra AN, Lukatkin AS, Singh HP, Pereira E, Tuteja N (2016) Catalase and ascorbate peroxidase-representative H2O2-detoxifying heme enzymes in plants. Environ Sci Pollut R 23:19002–19029

    Article  CAS  Google Scholar 

  • Bischof K, Rautenberger R (2012) Seaweed responses to environmental stress: reactive oxygen and antioxidative strategies. In: Wiencke C, Bischof K (eds) Seaweed Biology. Springer, Berlin, pp 109–132

    Chapter  Google Scholar 

  • Blouin NA, Brodie JA, Grossman AC, Xu P, Brawley SH (2011) Porphyra: a marine crop shaped by stress. Trends Plant Sci 16:29–37

    Article  CAS  PubMed  Google Scholar 

  • Cagnola JI, Ploschuk E, Benech-Arnold T, Finlayson SA, Casal JJ (2012) Stem transcriptome reveals mechanisms to reduce the energetic cost of shade-avoidance responses in tomato. Plant Physiol 160:1110–1119

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen NC, Tang L, Guan XW, Chen R, Cao M, Mao YX, Wang DM (2020) Thallus sectioning as an efficient monospore release method in Pyropia yezoensis (Bangiales, Rhodophyta). J Appl Phycol 32:2195–2200

    Article  Google Scholar 

  • Critchley C, Smillie RM (1981) Leaf chlorophyll fluorescence as an indicator of high light stress (photoinhibition) in Cucumis sativus L. Aust J Plant Physiol 8:133–141

    CAS  Google Scholar 

  • Dar NA, Amin I, Wani W, Wani SA, Shikari AB, Wani SH, Masoodi KZ (2017) Abscisic acid: a key regulator of abiotic stress tolerance in plants. Plant Gene 11:106–111

    Article  CAS  Google Scholar 

  • Edwards MS (2000) The role of alternate life-history stages of a marine macroalga: a seed bank analogue. Ecology 81:2404–2415

    Article  Google Scholar 

  • FAO (2020) The state of world fisheries and aquaculture: sustainability in action. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Ferreira VS, Pinto RF, Sant’Anna C (2016) Low light intensity and nitrogen starvation modulate the chlorophyll content of Scenedesmus dimorphus. J Appl Microbiol 120:661–670

    Article  CAS  PubMed  Google Scholar 

  • Figueroa FL, Conde-Álvarez R, Gómez I (2003) Relations between electron transport rates determined by pulse amplitude modulated chlorophyll fluorescence and oxygen evolution in macroalgae under different light conditions. Photosynth Res 75:259–275

    Article  CAS  PubMed  Google Scholar 

  • Figueroa FL, Celis-Plá PSM, Martínez B, Korbee N, Arenas F (2019) Yield losses and electron transport rate as indicators of thermal stress in Fucus serratus (Ochrophyta). Algal Res 41:101560.

  • Foyer CH (1996) Free radical processes in plants. Biochem Soc Trans 24:427–434

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplast a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  CAS  PubMed  Google Scholar 

  • Frazer AWJ, Brown MT (1995) Growth of the conchocelis phase of Porphyra columbina (Bangiales, Rhodophyta) at different temperatures and levels of light, nitrogen and phosphorus. Phycol Res 43:249–253

    Article  Google Scholar 

  • Fryer MJ, Ball L, Oxborough K, Karpinski S, Mullineaux PM, Baker NR (2003) Control of Ascorbate Peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leaves. Plant J 33:691–705

    Article  CAS  PubMed  Google Scholar 

  • Green LA, Neefus CD (2016) Effects of temperature, light level, and photoperiod on the physiology of Porphyra umbilicalis Kützing from the Northwest Atlantic, a candidate for aquaculture. J Appl Phycol 28:1815–1826

    Article  CAS  Google Scholar 

  • Hadiarto T, Tran LP (2011) Progress studies of drought-responsive genes in rice. Plant Cell Rep 30:297–310

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (1987) Oxidative damage, lipid peroxidation and antioxidant protection in chloroplasts. Chem Phys Lipids 44:327–340

    Article  CAS  Google Scholar 

  • Heck DE, Shakarjian M, Kim H, Laskin JD, Vetrano AM (2010) Mechanisms of oxidant generation by catalase. Ann NY Acad Sci 1203:120–125

    Article  CAS  PubMed  Google Scholar 

  • Henley WJ (1993) Measurement and interpretation of photosynthesis light-response curves in algae in the context of photoinhibition and diel changes. J Phycol 29:729–739

    Article  Google Scholar 

  • Herbert SK (1990) Photoinhibition resistance in the red alga Porphyra perforata. Plant Physiol 92:514–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He PM, Yarish C (2006) The developmental regulation of mass cultures of free-living conchocelis for commercial net seeding of Porphyra leucosticta from Northeast America. Aquaculture 257:373–381

    Article  Google Scholar 

  • Jiang HX, Wang YX, Yang P, Zhu JY (2013) Photosynthetic characteristics of female vegetative tissues of Porphyra katadai var. hemiphylla (Bangiales, Rhodophyta) in culture. J Appl Phycol 25:1873–1880

    Article  CAS  Google Scholar 

  • Kapraun DF, Lemus AJ (1987) Field and Culture Studies of Porphyra spiralis var. amplifolia Oliveira Filho et Coll (Bangiales, Rhodophyta) from Isla de Margarita, Venezuela. Bot Mar 30:483–490.

  • Kavale MG, Kazi MA, Sreenadhan N (2015) Pyropia acanthophora var. robusta var. nov. (Bangiales, Rhodophyta) from Goa. India Indian J Mar Sci 44:866–873

    Google Scholar 

  • Kim JH, Choi SJ, Lee S (2019) Effects of temperature and light on photosynthesis and growth of red alga Pyropia dentata (Bangiales, Rhodophyta) in a conchocelis phase. Aquaculture 505:167–172

    Article  CAS  Google Scholar 

  • Kim JH, Kang EJ, Park MG, Lee BG, Kim KY (2011) Effects of temperature and irradiance on photosynthesis and growth of a green-tide-forming species (Ulva linza) in the Yellow Sea. J Appl Phycol 23:421–432

    Article  Google Scholar 

  • Kim JH, Lam SMN, Kim KY (2013) Photoacclimation strategies of the temperate coralline alga Corallina officinalis: a perspective on photosynthesis, calcification, photosynthetic pigment contents and growth. Algae 28:355–363

    Article  CAS  Google Scholar 

  • Klughammer C, Schreiber U (2008) Complementary PS II quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the Saturation Pulse method. PAM Application Notes 1:27–35

    Google Scholar 

  • Kokubu S, Nishihara N, Watanabe Y, Tsuchiya Y, Amamo Y, Terada R (2015) The effect of irradiance and temperature on the photosynthesis of a native alga Sargassum fusiforme (Fucales) from Kagoshima, Japan. Phycologia 54:235–247

    Article  Google Scholar 

  • Knoop J, Griffin JN, Barrento S (2020) Cultivation of early life history stages of Porphyra dioica from the British Isles. J Appl Phycol 32:459–471

    Article  CAS  Google Scholar 

  • Kumar M, Kumari P, Reddy CRK, Jha B (2014) Salinity and desiccation induced oxidative stress acclimation in seaweeds. Adv Bot Res 71:91–123

    Article  Google Scholar 

  • Kurepin LV, Emery RJ, Pharis RP, Reid DM (2007) Uncoupling light quality from light irradiance effects in Helianthus annuus shoots: putative roles for plant hormones in leaf and internode growth. J Exp Bot 58:2145–2157

    Article  CAS  PubMed  Google Scholar 

  • Li JY, Liu YC, Liu Y, Wang QH, Gao X, Gong QL (2019) Effects of temperature and salinity on the growth and biochemical composition of the brown alga Sargassum fusiforme (Fucales, Phaeophyceae). J Appl Phycol 31:3061–3068

    Article  CAS  Google Scholar 

  • Li XS, Yang L, He PM (2011) Formation and growth of free-living conchosporangia of Porphyra yezoensis: effects of photoperiod, temperature and light intensity. Aquac Res 42:1079–1086

    Article  Google Scholar 

  • Lin AP, Wang GC, Yang F, Pan GH (2009) Photosynthetic parameters of sexually different parts of Porphyra katadai var. hemiphylla (Bangiales, Rhodophyta) during dehydration and re-hydration. Planta 229:803–810

    Article  CAS  PubMed  Google Scholar 

  • Lin RL, Lindstrom SC, Stekoll MS (2008) Photosynthesis and respiration of the conchocelis stage of Alaskan Porphyra (Bangiales, Rhodophyta) species in response to environmental variables. J Phycol 44:573–583

    Article  CAS  PubMed  Google Scholar 

  • Lin RL, Stekoll MS (2013) Responses of chlorophyll a content for conchocelis phase of Alaskan Porphyra (Bangiales, Rhodophyta) species to environmental factors. Adv Biosci Bioeng 1:28–39

    Google Scholar 

  • Lu S, Yarish C (2011) Interaction of photoperiod and temperature in the development of conchocelis of Porphyra purpurea (Rhodophyta: Bangiales). J Appl Phycol 23:89–96

    Article  Google Scholar 

  • Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol 45:633–662

    Article  CAS  Google Scholar 

  • López-Vivas JM, Riosmena-Rodriguez R, Jiménez-González de la Llave AA, Pacheco-Ruíz I, Yarish C (2015) Growth and reproductive responses of the conchocelis phase of Pyropia hollenbergii (Bangiales, Rhodophyta) to light and temperature. J Appl Phycol 27:1561–1570

    Article  Google Scholar 

  • Lüning K (1990) Seaweeds: Their Environment Biogeography and Ecopysiology. John Wiley & Sons, New York, p 527

    Google Scholar 

  • Mathur S, Agrawal D, Jajoo AJ (2014) Photosynthesis: response to high temperature stress. J Photochem Photobiol B 137:116–126

    Article  CAS  PubMed  Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol 8:409–414

    Article  CAS  PubMed  Google Scholar 

  • Mhamdi A, Noctor G, Baker A (2012) Plant catalases: peroxisomal redox guardians. Arch Biochem Biophys 525:181–194

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Monotilla WD, Notoya M (2010) Growth and development of Porphyra marcosii (Bangiales, Rhodophyta) under different temperatures and photoperiod. Philipp J Sci 139:197–206

    Google Scholar 

  • Müller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  PubMed  PubMed Central  Google Scholar 

  • Pereira R, Sousa-Pinto I, Yarish C (2004) Field and culture studies of the life history of Porphyra dioica (Bangiales, Rhodophyta) from Portugal. Phycologia 43:756–767

    Article  Google Scholar 

  • Pereira R, Yarish C (2008) Mass production of marine macroalgae. Encyclopedia of Ecology 5:2236–2247

    Article  Google Scholar 

  • Prassana R, Pabby A, Saxena S, Singh PK (2004) Modulation of pigment profiles of Calothrix elenkenii in response to environmental changes. J Plant Physiol 161:1125–1132

    Article  Google Scholar 

  • Quan LJ, Zhang B, Shi WW, Li HY (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integr Plant Biol 50:2–18

    Article  CAS  PubMed  Google Scholar 

  • Ralph PJ, Gademann R (2005) Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat Bot 82:222–237

    Article  CAS  Google Scholar 

  • Ragni M, Airs RL, Leonardos N, Geider RJ (2008) Photoinhibition of PSII in Emiliania huxleyi (Haptophyta) under high light stress: the roles of photoacclimation, photoprotection, and photorepair. J Phycol 44:670–683

    Article  CAS  PubMed  Google Scholar 

  • Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571

    Article  PubMed  PubMed Central  Google Scholar 

  • Sahoo D, Yarish C (2005) Mariculture of seaweeds. In: Andersen RA (ed) Algal Culturing Techniques. Acadamic Press, NY, pp 219–238

    Google Scholar 

  • Sampath-Wiley P, Neefus CD, Jahnke LS (2008) Seasonal effects of sun exposure and emersion on intertidal seaweed physiology: fluctuations in antioxidant contents, photosynthetic pigments and photosynthetic efficiency in the red alga Porphyra umbilicalis Kuetzing (Rhodophyta, Bangiales). J Exp Mar Biol Ecol 361:83–91

    Article  CAS  Google Scholar 

  • Sano F, Murata K, Niwa K (2020) Identification, growth, and pigment content of a spontaneous green mutant of Pyropia kinositae (Bangiales, Rhodophyta). J Appl Phycol 32:1983–1994

    Article  CAS  Google Scholar 

  • Santelices B, Aedo D, Hoffmann A (2002) Banks of microscopic forms and survival to darkness of propagules and microscopic stages of macroalgae. Rev Chil Hist Nat 75:547–555

    Article  Google Scholar 

  • Sidirelli WM (1992) The influence of temperature, irradiance and photoperiod on the reproductive life history of Porphyra leucosticta (Bangiales, Rhodophyta) in laboratory culture. Bot Mar 35:251–257.

  • Smirnoff N, Arnaud D (2019) Hydrogen peroxide metabolism and functions in plants. New Phytol 221:1197–1214

    Article  CAS  PubMed  Google Scholar 

  • Sreenivasulu N, Harshavardhan VT, Govind G, Seiler C, Kohli A (2012) Contrapuntal role of ABA: does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene 506:265–273

    Article  CAS  PubMed  Google Scholar 

  • Staneloni RJ, Rodriguez-Batiller MJ, Casal JJ (2008) Abscisic acid, high-light, and oxidative stress down-regulate a photosynthetic gene via a promoter motif not involved in phytochrome-mediated transcriptional regulation. Mol Plant 1:75–83

    Article  CAS  PubMed  Google Scholar 

  • Sun AS, Tseng CK (1996) Preliminary report on suspension culture of clone of Porphyra yezoensis conchosporangial filaments in the production of purple laver aquaculture. Oceanol Limnol Sinica 27:667–670 ((in Chinese with English abstract))

    Google Scholar 

  • Tang XR, Jiang HX, Fei XG, Yarish C (2004) New life cycles of Porphyra katadae var. hemiphylla in culture. J Appl Phycol 16:505–511

    Article  Google Scholar 

  • Tseng CK (1983) Common seaweeds of China. Science Press, Beijing

    Google Scholar 

  • Waaland RJ, Dickson LG, Carrier J (1987) Conchocelis growth and photoperiodic control of conchospore release in Porphyra torta (Rhodophyta). J Phycol 23:399–406

    Article  Google Scholar 

  • Wang WJ, Sun XT, Liu FL, Liang ZR, Zhang JH, Wang FJ (2016) Effect of abiotic stress on the gameophyte of Pyropia katadae var. hemiphylla (Bangiales, Rhodophyta). J Appl Phycol 28:469–479

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Wang WL, Teng F, Lin YH, Ji DH, Xu Y, Chen CS, Xie CT (2018) Transcriptomic study to understand thermal adaptation in a high temperature-tolerant strain of Pyropia haitanensis. Plos One 13:e0195842.

  • Wang ZB, Li GF, Sun HQ, Ma L, Guo YP, Zhao ZY, Gao H, Mei LX (2018) Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biol Open 7:bio035279.

  • Watanabe Y, Nishihara GN, Tokunaga S, Terada R (2014) Effect of irradiance and temperature on the photosynthesis of a cultivated red alga, Pyropia tenera (=Porphyra tenera), at the southern limit of distribution in Japan. Phycol Res 62:187–196

    Article  CAS  Google Scholar 

  • Watanabe Y, Yamada H, Mine T, Kawamura Y, Nishihara GN, Terada R (2016) Photosynthetic responses of Pyropia yezoensis f. narawaensis (Bangiales, Rhodophyta) to a thermal and PAR gradient vary with the life-history stage. Phycologia 55:665–672

    Article  CAS  Google Scholar 

  • Wedchaparn O, Ayisi CL, Huo Y, He PM (2017) Effect of different temperature fluctuations and different initial concentrations of NO3-N and PO4-P on growth, nutrient uptake and photosynthetic efficiency of Gracilaria asiatica. Indian J Mar Sci 46:1128–1134

    Google Scholar 

  • Yang LE, Deng YY, Xu GP, Russell S, Lu QQ, Brodie J (2020) Redefining Pyropia (Bangiales, Rhodophyta): four new genera, resurrection of Porphyrella and description of Calidia pseudolobata sp. J Phycol 56:862–879

    Article  CAS  PubMed  Google Scholar 

  • Ye ZP, Suggett DJ, Robakowski P, Kang HJ (2013) A mechanistic model for the photosynthesis-light response based on the photosynthetic electron transport of photosystem II in C3 and C4 species. New Phytol 199:110–120

    Article  CAS  PubMed  Google Scholar 

  • Zhang XC, Brammer E, Pedersen M, Fei XG (1997) Effects of light photon flux density and spectral quality on photosynthesis and respiration in Porphyra yezoensis (Bangiales, Rhodophyta). Phycol Res 45:29–37

    Article  Google Scholar 

  • Zhong ZH, Wang WJ, Sun XT, Liu FL, Liang ZR, Wang FJ, Chen WZ (2016) Developmental and physiological properties of Pyropia dentata (Bangiales, Rhodophyta) conchocelis in culture. J Appl Phycol 28:3435–3445

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences for equipment support.

Funding

This study was financially supported by National Key R&D Program of China (2018YFD0901505; 2018YFD0900305), China Agriculture Research System of MOF and MARA.

Author information

Authors and Affiliations

Authors

Contributions

ZRL designed and performed the experiments, analyzed the data, and drafted the manuscript. FLL and WJW performed sample collection, helped design experiments, analyzed the data, and drafted the manuscript. PYZ, YMY and HQY helped in culturing thallus and conchocelis of N. katadae. YL and RJJ helped in performing the experiments and analyzed the data. XTS and FJW performed sample collection and analyzed part of the data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fuli Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Liu, F., Wang, W. et al. Physiological and biochemical responses to light and temperature stress in free-living conchocelis of Neopyropia katadae (Bangiales, Rhodophyta). J Appl Phycol 34, 1059–1072 (2022). https://doi.org/10.1007/s10811-022-02691-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-022-02691-5

Keywords

Navigation