Skip to main content
Log in

A statistical approach for optimization of R-phycoerythrin extraction from the red algae Gracilaria verrucosa by enzymatic hydrolysis using central composite design and desirability function

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The aim of this research is to statistically optimize enzymatic hydrolysis parameters for the production of R-phycoerythrin (RPE) from red algae Gracilaria verrucosa. Six independent variables, incubation temperature, incubation time, ratio of buffer to raw material, cellulase loading, xylanase loading, and pH, were selected for response surface methodology studies. A central composite design was employed to maximize RPE production. A mathematical model with high determination coefficient (R 2 = 0.86) was developed and could be employed to optimize RPE extraction. The optimal extraction conditions of RPE were determined as follows: incubation temperature (48°C), incubation time (6 h), ratio of buffer to raw material (20 w/v), cellulase loading (15%), xylanase loading (5%), and pH (6.5). Under this optimal condition, the experimental yield of RPE was 6.25 mg g−1. Based on the result of response surface methodology and desirability function approach study, total sugar, the main by-product in RPE extraction was considered as another response. A new optimal condition was predicted as follows: incubation temperature (30°C), incubation time (12 h), ratio of buffer to raw material (20, w/v), cellulase loading (15%), xylanase loading (5%), and pH (6). Under this condition, similar RPE levels were obtained while the concentration of total sugar decreased by 40%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abalde J, Betancourt L, Torres E, Cid A, Barwell C (1998) Purification and characterization of phycocyanin from the marine cyanobacterium Synechococcus sp. IO9201. Plant Sci 136:109–120

    Article  CAS  Google Scholar 

  • Abdeladhim L (2005) Contribution à l’identification taxonomique et à la valorisation des protéines des Gracilaires de Tunisie (lac Nord de Tunis et la lagune de Bizerte) par les outils de biologie moléculaire. Master’s thesis, Institut National Agronomique de Tunisie, Tunisia

  • Allen SG, Schulman D, Lichwa J, Antal MJ, Jennings E, Elander R (2001) A comparison of aqueous and dilute-acid single-temperature pretreatment of yellow poplar sawdust. Ind Eng Chem Res 40:2352–2361

    Article  CAS  Google Scholar 

  • Bansal P, Mélanie H, Matthew JR, Jay HL, Andreas SB (2009) Modeling cellulase kinetics on lignocellulosic substrates. Biotechnol Adv 27:833–848

    Article  PubMed  CAS  Google Scholar 

  • Barbarino E, Lourenço SO (2005) An evaluation of methods for extraction and quantification of protein from marine macro- and microalgae. J Appl Phycol 17:447–460

    Article  CAS  Google Scholar 

  • Collins T, Gerady C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  PubMed  CAS  Google Scholar 

  • Craigie JS (1990) Cell wall. In: Cole KM, Sheath RG (eds) Biology of the red algae. Cambridge University Press, New York, pp 221–257

    Google Scholar 

  • Deeble MF, Lee MJ (1985) Enzymatic hydrolysis of cellulosic substances in an attrition bioreactor. Biotechnol Bioeng Symp 15:277–293

    Google Scholar 

  • Deniaud E, Fleurence J, Lahaye M (2003) Preparation and chemical characterization of cell wall fractions enriched in structural proteins from Palmaria palmata (Rhodophyta). Bot Mar 46:366–377

    Article  CAS  Google Scholar 

  • Denis C, Michèle M, Pierre G, Fleurence J (2009) Effect of enzymatic digestion on thallus degradation and extraction of hydrosoluble compounds from Grateloupia turuturu. Bot Mar 52:262–267

    Article  CAS  Google Scholar 

  • Derringer G, Suich R (1980) Simultaneous optimization of several response variables. J Qual Technol 12:214–219

    Google Scholar 

  • Dubois M, Gilles JK, Hamilton PA, Rebers FS (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Elias CB, Joshi JB (1998) Role of hydrodynamic shear on activity and structure of proteins. Adv Biochem Eng Biotechnol 59:47–71

    Article  PubMed  CAS  Google Scholar 

  • Fleurence J (1999a) The enzymatic degradation of algal cell walls: a useful approach for improving protein accessibility? J Appl Phycol 11:313–314

    Article  CAS  Google Scholar 

  • Fleurence J (1999b) Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends Food Sci Technol 10:25–28

    Article  CAS  Google Scholar 

  • Fleurence J (2003) R-phycoerythrin from red macroalgae: strategies for extraction and potential application in biotechnology. Appl Biotech Food Sci Pol 1:63–68

    CAS  Google Scholar 

  • Fleurence J, Guyader O (1995) Contribution of electrophoresis to the identification of red seaweeds (Gracilaria sp.) used as food ingredients. Sci Aliments 15:43–48

    CAS  Google Scholar 

  • Fleurence J, Massiani L, Guyader O, Mabeau S (1995) Use of enzymatic cell wall degradation for improvement of protein extraction from Chondrus crispus, Gracilaria verrucosa and Palmaria palmata. J Appl Phycol 7:393–397

    Article  CAS  Google Scholar 

  • Glazer AJ, Sttryer L (1984) Phycofluor probes. Trends Biochem Sci 9:423–427

    Article  CAS  Google Scholar 

  • Ishizawa CI, Davis MF, Schell DF, Johnson DK (2007) Porosity and its effect on the digestibility of dilute sulfuric acid pretreated corn stover. J Agric Food Chem 55:2575–2581

    Article  PubMed  CAS  Google Scholar 

  • Joubert Y, Fleurence J (2008) Simultaneous extraction of proteins and DNA by an enzymatic treatment of the cell wall of Palmaria palmata (Rhodophyta). J Appl Phycol 20:55–61

    Article  CAS  Google Scholar 

  • Kloareg B, Quatrano RS (1988) Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr Mar Biol Ann Rev 26:259–315

    Google Scholar 

  • Kula MR, Schutte H (1987) Purification of proteins and the disruption of microbial cells. Biotechnol Prog 3:31–42

    Article  CAS  Google Scholar 

  • Lahaye M, Vigouroux J (1992) Liquefaction of dulse (Palmaria palmata (L.) Kuntze) by a commercial enzyme preparation and a purified endo-β-1,4-d-xylanase. J Appl Phycol 4:329–337

    Article  CAS  Google Scholar 

  • Lee Y, Fan LT (1983) Kinetic studies of enzymatic hydrolysis of insoluble cellulose: (II) analysis of extended hydrolysis times. Biotechnol Bioeng 25:939–966

    Article  PubMed  CAS  Google Scholar 

  • Montgomery DC (1997) Design and analysis of experiments, 4th edn. Wiley, New York

    Google Scholar 

  • Myers RH, Montgomery DC (2002) Response surface methodology: process and product optimization using designed experiments, 2nd edn. Wiley, New York

    Google Scholar 

  • Niu JF, Wang GC, Zhou BC, Lin XZ, Chen CS (2007) Purification of R-phycoerythrin from Porphyra haitanensis (Bangiales, Rhodophyta) using expanded-bed absorption. J Phycol 43:1339–1347

    Article  CAS  Google Scholar 

  • Rossano R, Ungaro N, D’Ambrosio A, Liuzzi GM, Riccio P (2003) Extracting and purifying R-phycoerythrin from Mediterranean red algae Corallina elongata Ellis & Solander. J Biotechnol 101:289–292

    Article  PubMed  CAS  Google Scholar 

  • San Martin R, Aguilera JM, Hohlberg AI (1988) Effect of cellulase pretreatments on red algae agar extractability. Carbohydr Polym 8:33–43

    Article  CAS  Google Scholar 

  • Sangkharak K, Prasertsan P (2007) Optimization of polyhydroxybutyrate production from a wild type and two mutant strains of Rhodobacter sphaeroides using statistical method. J Biotechnol 132:331–340

    Article  PubMed  CAS  Google Scholar 

  • Sekar S, Chandramohan M (2008) Phycobiliproteins as a commodity trends in applied research, patents and commercialization. J Appl Phycol 20:113–136

    Article  Google Scholar 

  • Siegelman HW, Kycia JH (1978) Algal biliproteins. In: Hellebust JA, Craisie JS (eds) Handbook of phycological methods. Cambridge University Press, Cambridge, pp 71–79

    Google Scholar 

  • Tchernov AA, Minkova KM, Georgiev DI, Houbavenska NB (1993) Method for B-phycoerythrin purification from Porphyridium cruentum. Biotechnol Tech 7:853–858

    Article  Google Scholar 

  • Väljamäe P, Sild V, Pettersson G, Johansson G (1998) The initial kinetics of hydrolysis by cellobiohydrolases I and II is consistent with a cellulose surface erosion model. Eur J Biochem 253:469–475

    Article  PubMed  Google Scholar 

  • Wang G (2002) Isolation and purification of phycoerythrin from red alga Gracilaria verrucosa by expended-bed-adsorption and ion-exchange chromatography. Chromatographia 56:509–513

    Article  CAS  Google Scholar 

  • Yang S, Ding W, Chen H (2006) Enzymatic hydrolysis of rice straw in a tubular reactor coupled with UF membrane. Process Biochem 41:721–725

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Doctor Ktari Leila who helped with our discussion and provide editing advice for the manuscript. The authors are extremely grateful to Mr. Rajeb Chokri, Director of “Centre Technique d’Agroalimentaire (CTAA)”, for his help with our analytical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fethi Mensi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mensi, F., Ksouri, J., Seale, E. et al. A statistical approach for optimization of R-phycoerythrin extraction from the red algae Gracilaria verrucosa by enzymatic hydrolysis using central composite design and desirability function. J Appl Phycol 24, 915–926 (2012). https://doi.org/10.1007/s10811-011-9712-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-011-9712-1

Keywords

Navigation