Journal of Applied Electrochemistry

, Volume 42, Issue 2, pp 69–74 | Cite as

Preparation and electrochemical properties of SiO2–non-graphitizable carbon composites as negative electrode materials for Li-ion batteries

  • Takayuki Doi
  • Masao Tagashira
  • Yasutoshi Iriyama
  • Takeshi Abe
  • Zempachi Ogumi
Original Paper


SiO2–non-graphitizable carbon composites were prepared by pyrolysis of a mixture of ethyl cellulose and nano-sized SiO2. The composite electrode showed high reversibility in insertion and/or extraction reactions of Li ions at potentials below 1 V with little hysteresis after the 2nd cycle, whereas a large irreversible capacity was observed in the 1st cycle. This reversible capacity increased with increasing SiO2 content above 5 wt%. Li ion transfer at the interface between a composite electrode and an electrolyte was studied by ac impedance spectroscopy. In the Nyquist plots, a semi-circle that was assigned to charge-transfer resistance (Rct) because of Li ion transfer across the interface between the composite electrode and electrolyte appeared at potentials below 1 V. The values of Rct decreased with increasing SiO2 content. These results indicate that both a decrease in Rct and an increase in reversible capacity can be achieved by use of SiO2–non-graphitizable carbon composite electrodes; this would lead to Li-ion batteries with higher power and energy density.


Non-graphitizable carbon Silicon oxide Negative electrode Lithium-ion battery 


  1. 1.
    Winter M, Besenhard JO, Spahr ME, Novak P (1998) Adv Mater 10:725CrossRefGoogle Scholar
  2. 2.
    Ogumi Z, Inaba M (1998) Bull Chem Soc Jpn 71:521CrossRefGoogle Scholar
  3. 3.
    Doi T, Miyatake K, Iriyama Y, Abe T, Ogumi Z, Nishizawa T (2004) Carbon 42:3183CrossRefGoogle Scholar
  4. 4.
    Doi T, Iriyama Y, Abe T, Ogumi Z (2005) J Electrochem Soc 152:A1521CrossRefGoogle Scholar
  5. 5.
    Iriyama Y, Kurita H, Yamada I, Abe T, Ogumi Z (2004) J Power Sources 137:111CrossRefGoogle Scholar
  6. 6.
    Sawai K, Ohzuku T (2003) J Electrochem Soc 150:A674CrossRefGoogle Scholar
  7. 7.
    Mizuhata M, Kitamura M, Kajinami A, Deki S (2003) In: Abstract of 70th Electrochemical Society of Japan, 1M31Google Scholar
  8. 8.
    Croce F, Curini R, Martinelli A, Persi L, Ronci F, Scrosati B (1999) J Phys Chem B 103:10632CrossRefGoogle Scholar
  9. 9.
    Dahn JR, Zheng T, Liu YH, Xue JS (1995) Science 270:590CrossRefGoogle Scholar
  10. 10.
    Iijima T, Suzuki K, Matsuda Y (1995) Synth Met 73:9CrossRefGoogle Scholar
  11. 11.
    Sato K, Noguchi M, Demachi A, Oki N, Endo M (1994) Science 264:56CrossRefGoogle Scholar
  12. 12.
    Wilson AM, Dahn JR (1995) J Electrochem Soc 142:326CrossRefGoogle Scholar
  13. 13.
    Tamai H, Matsuoka S, Ishihara M, Yasuda H (2001) Carbon 39:1515CrossRefGoogle Scholar
  14. 14.
    Liu Y, Hanai K, Yang J, Imanishi N, Hirano A, Takeda Y (2004) Solid State Ion 168:61CrossRefGoogle Scholar
  15. 15.
    Tuinstra F, Koenig JL (1970) J Chem Phys 53:1126CrossRefGoogle Scholar
  16. 16.
    Funabiki A, Inaba M, Abe T, Ogumi Z (1999) J Electrochem Soc 146:2443CrossRefGoogle Scholar
  17. 17.
    Xue JS, Dahn JR (1995) J Electrochem Soc 142:3668CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Takayuki Doi
    • 1
    • 2
  • Masao Tagashira
    • 3
  • Yasutoshi Iriyama
    • 4
  • Takeshi Abe
    • 3
  • Zempachi Ogumi
    • 3
  1. 1.Institute for Materials Chemistry and EngineeringKyushu UniversityKasugaJapan
  2. 2.Office of Society-Academia Collaboration for InnovationKyoto UniversityGokasho, UjiJapan
  3. 3.Graduate School of EngineeringKyoto UniversityKyotoJapan
  4. 4.Department of Materials Science & Chemical Engineering, Faculty of EngineeringShizuoka UniversityHamamatsuJapan

Personalised recommendations