Skip to main content

Advertisement

Log in

Similarities in correlates of native and introduced fish species richness distribution in Brazilian reservoirs

  • INVASIVE SPECIES II
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We assessed the relationships among native and introduced fish species richness and a set of explanatory variables, including area, altitude, reservoir age, temperature, human influence index and fish abundance. We expected to find different relationships based on species origin (i.e., native or introduced). Based on compiled data from Brazilian reservoirs, we modeled the variation in the number of native and introduced fish species by generalized linear mixed models with different spatial autocorrelation structures. Reservoirs located in warmer regions and with higher fish abundance showed higher species richness of both native and introduced fish. Reservoir age tended to be negatively correlated with native species richness. Our results suggest that reservoir communities in warmer regions may be more resistant to local extinctions caused by impoundments, but they are more susceptible to species introductions. Our results also highlight that an extinction debt can be expected for native species because older reservoirs showed lower native species richness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agostinho, A. A., L. E. Miranda, L. M. Bini, L. C. Gomes, S. M. Thomaz & H. I. Suzuki, 1999. Patterns of colonization in neotropical reservoirs, and prognoses on aging. In Tundisi, J. G. & M. Straskraba (eds.), Theoretical Reservoir Ecology and Its Applications. Backhuys, Leiden: 227–265.

    Google Scholar 

  • Agostinho, A. A., L. C. Gomes & F. M. Pelicice, 2007. Ecologia e manejo de recursos pesqueiros em reservatórios do Brasil. Eduem, Maringá.

    Google Scholar 

  • Agostinho, A. A., F. M. Pelicice & L. C. Gomes, 2008. Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Brazilian Journal of Biology 68: 1119–1132.

    Article  CAS  Google Scholar 

  • Agostinho, A. A., H. I. Suzuki, R. Fugi, D. C. Alves, L. H. Tonella & L. A. Espindola, 2015. Ecological and life history traits of Hemiodus orthonops in the invasion process: looking for clues at home. Hydrobiologia 746: 415–430.

    Article  Google Scholar 

  • Agostinho, A. A., L. C. Gomes, N. C. L. Santos, J. C. G. Ortega & F. M. Pelicice, 2016. Fish assemblages in Neotropical reservoirs: colonization patterns, impacts and management. Fisheries Research 173: 26–36.

    Article  Google Scholar 

  • Allen, A. P., J. F. Gillooly, V. M. Savage & J. H. Brown, 2006. Kinetic effects of temperature on rates of genetic divergence and speciation. Proceedings of the National Academy of Sciences of the United States of America 103: 9130–9135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alofs, K. M. & D. A. Jackson, 2015. The abiotic and biotic factors limiting establishment of predatory fishes at their expanding northern range boundaries in Ontario, Canada. Global Change Biology 21: 2227–2237.

    Article  PubMed  Google Scholar 

  • Araújo, E. S., E. E. Marques, I. S. Freitas, A. L. Neuberger, R. Fernandes & F. M. Pelicice, 2013. Changes in distance decay relationships after river regulation: similarity among fish assemblages in a large Amazonian river. Ecology of Freshwater Fishes 22: 543–552.

    Article  Google Scholar 

  • Bailly, D., F. A. S. Cassemiro, C. S. Agostinho, E. E. Marques & A. A. Agostinho, 2014. The metabolic theory of ecology convincingly explains the latitudinal diversity gradient of Neotropical freshwater fish. Ecology 95: 553–562.

    Article  PubMed  Google Scholar 

  • Bailly, D., F. A. S. Cassemiro, K. O. Winemiller, J. A. F. Diniz-Filho & A. A. Agostinho, 2016. Diversity gradients of Neotropical freshwater fish: evidence of multiple underlying factors in human-modified systems. Journal of Biogeography 43: 1679–1689.

    Article  Google Scholar 

  • Blackburn, T. M., P. Pyšek, S. Bacher, J. T. Carlton, R. P. Duncan, V. Jarošík, J. R. U. Wilson & D. M. Richardson, 2011. A proposed unified framework for biological invasions. Trends in Ecology and Evolution 26: 333–339.

    Article  PubMed  Google Scholar 

  • Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens & J.-S. S. White, 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology and Evolution 24: 127–135.

    Article  PubMed  Google Scholar 

  • Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage & G. B. West, 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.

    Article  Google Scholar 

  • Cassemiro, F. A. S. & J. A. F. Diniz-Filho, 2010. Deviations from predictions of the metabolic theory of ecology can be explained by violations of assumptions. Ecology 91: 3729–3738.

    Article  PubMed  Google Scholar 

  • Catford, J. A., R. Jansson & C. Nilsson, 2009. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Diversity and Distributions 15: 22–40.

    Article  Google Scholar 

  • Clavero, M., V. Hermoso, E. Aparicio & F. N. Godinho, 2013. Biodiversity in heavily modified waterbodies: native and introduced fish in Iberian reservoirs. Freshwater Biology 58: 1190–1201.

    Article  Google Scholar 

  • Cunha-Santino, M. B., A. L. Bitar & I. Bianchini Jr., 2013. Chemical constraints on new man-made lakes. Environmental Monitoring and Assessment 185: 10177–10190.

    Article  PubMed  CAS  Google Scholar 

  • Dormann, C. F., J. M. McPherson, M. B. Araújo, R. Bivand, J. Bolliger, G. Carl, R. G. Davies, A. Hirzel, W. Jetz, W. D. Kissling, I. Kühn, R. Ohlemüller, P. R. Peres-Neto, B. Reineking, B. Schröder, F. M. Schurr & R. Wilson, 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30: 609–628.

    Article  Google Scholar 

  • Dormann, C. F., J. Elith, S. Bacher, C. Buchmann, G. Carl, G. Carré, J. R. G. Marquéz, B. Gruber, B. Lafourcade, P. J. Leitão, T. Münkemüller, C. McClean, P. E. Osborne, B. Reineking, B. Schröder, A. K. Skidmore, D. Zurell & S. Lautenbach, 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36: 27–46.

    Article  Google Scholar 

  • Drakare, S., J. J. Lennon & H. Hillebrand, 2006. The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecology Letters 9: 215–227.

    Article  PubMed  Google Scholar 

  • Ferro, V. G. & A. S. Melo, 2011. Diversity of tiger moths in a Neotropical hotspot: determinants of species composition and identification of biogeographic units. Journal of Insect Conservation 15: 643–651.

    Article  Google Scholar 

  • Field, R., B. A. Hawkins, H. V. Cornell, David J. Currie, J. A. F. Diniz-Filho, J.-F. Guégan, D. M. Kaufman, J. T. Kerr, G. G. Mittelbach, T. Oberdorff, E. M. O’Brien & J. R. G. Turner, 2009. Spatial species-richness gradients across scales: a meta-analysis. Journal of Biogeography 36: 132–147.

    Article  Google Scholar 

  • Fitzgerald, D. B., M. Tobler & K. O. Winemiller, 2016. From richer to poorer: successful invasion by freshwater fishes depends on species richness of donor and recipient basins. Global Change Biology 22: 2440–2450.

    Article  PubMed  Google Scholar 

  • Fox, J. & G. Monette, 1992. Generalized collinearity diagnostics. Journal of the American Statistical Association 87: 178–183.

    Article  Google Scholar 

  • Fox, J. & S. Weisberg, 2011. An R Companion to Applied Regression. Sage, Thousand Oaks.

    Google Scholar 

  • Fridley, J. D., J. J. Stachowicz, S. Naeem, D. F. Sax, E. W. Seabloom, M. D. Smith, T. J. Stohlgren, D. Tilman & B. Von Holle, 2007. The invasion paradox: reconciling pattern and process in species invasions. Ecology 88: 3–17.

    Article  PubMed  CAS  Google Scholar 

  • Garcia, D. A. Z., J. R. Britton, A. P. Vidotto-Magnoni & M. L. Orsi, 2017. Introductions of non-native fishes into a heavily modified river: rates, patterns and management issues in the Paranapanema River (Upper Paraná ecoregion, Brazil). Biological Invasions. https://doi.org/10.1007/s10530-017-1623-x.

    Article  Google Scholar 

  • Gaston, K. J., 2007. Latitudinal gradient in species richness. Current Biology 17: R574.

    Article  PubMed  CAS  Google Scholar 

  • Gomes, L. C. & L. E. Miranda, 2001. Riverine characteristics dictate composition of fish assemblages and limit fisheries in reservoirs of the upper Paraná River basin. Regulated Rivers 17: 67–76.

    Article  Google Scholar 

  • Gotelli, N. J. & R. K. Colwell, 2011. Estimating species richness. In Magurran, A. E. & B. J. McGill (eds.), Biological Diversity: Frontiers in the Measurement and Assessment. Oxford Univesity Press, Oxford: 39–54.

    Google Scholar 

  • Gouskov, A., M. Reyes, L. Wirthner-Bitterlin & C. Vorburger, 2016. Fish population genetic structure shaped by hydroelectric power plants in the upper Rhine catchment. Evolutionary Applications 9: 394–408.

    Article  PubMed  PubMed Central  Google Scholar 

  • Graça, W. J. & C. S. Pavanelli, 2007. Peixes da planície de inundação do Alto Rio Paraná e áreas adjacentes. Eduem, Maringá.

    Google Scholar 

  • Griffiths, D., C. McGonigle & R. Quinn, 2014. Climate and species richness patterns of freshwater fish in North America and Europe. Journal of Biogeography 41: 452–463.

    Article  Google Scholar 

  • Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones & A. Jarvis, 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978.

    Article  Google Scholar 

  • Johnson, P. T., J. D. Olden & M. J. V. Zanden, 2008. Dam invaders: impoundments facilitate biological invasions into freshwaters. Frontiers in Ecology and the Environment 6: 357–363.

    Article  Google Scholar 

  • Júlio Jr., H. F., C. D. Tós, A. A. Agostinho & C. S. Pavanelli, 2009. A massive invasion of fish species after eliminating a natural barrier in the upper rio Paraná basin. Neotropical Ichthyology 7: 709–718.

    Article  Google Scholar 

  • Langeani, F., R. M. C. Castro, O. T. Oyakawa, O. A. Shibatta, C. S. Pavanelli & L. Cassatti, 2007. Diversidade da ictiofauna do Alto Rio Paraná: composição atual e perspectivas futuras. Biota Neotropica 7: 181–197.

    Article  Google Scholar 

  • Leprieur, F., O. Beauchard, S. Blanchet, T. Oberdorff & S. Brosse, 2008. Fish invasions in the world’s river systems: when natural processes are blurred by human activities. PLoS Biology 6: e28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leprieur, F., J. D. Olden, S. Lek & S. Brosse, 2009. Contrasting patterns and mechanisms of spatial turnover for native and exotic freshwater fish in Europe. Journal of Biogeography 36: 1899–1912.

    Article  Google Scholar 

  • Lévêque, C., T. Oberdorff, D. Paugy, M. L. J. Stiassny & P. A. Tedesco, 2008. Global diversity of fish (Pisces) in freshwater. Hydrobiologia 595: 545–567.

    Article  Google Scholar 

  • Lima, A. C., C. S. Agostinho, D. Sayanda, F. M. Pelicice, A. M. V. M. Soares & K. A. Monaghan, 2016. The rise and fall of fish diversity in a neotropical river after impoundment. Hydrobiologia 763: 207–221.

    Article  Google Scholar 

  • Lockwood, J. L., P. Cassey & T. M. Blackburn, 2009. The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Diversity and Distributions 15: 904–910.

    Article  Google Scholar 

  • Lomolino, M. V., 2001. Elevation gradients of species-density: historical and prospective views. Global Ecology and Biogeography 10: 3–13.

    Article  Google Scholar 

  • MacArthur, R. H. & E. O. Wilson, 1967. The Theory of Island Biogeography. Princeton University Press, Princeton.

    Google Scholar 

  • Magalhães, A. L. B. & C. M. Jacobi, 2013. Invasion risks posed by ornamental freshwater fish trade to southeastern Brazilian rivers. Neotropical Ichthyology 11: 433–441.

    Article  Google Scholar 

  • Marchetti, M. P., P. B. Moyle & R. Levine, 2004. Alien fishes in California watersheds: characteristics of successful and failed invaders. Ecological Applications 14: 587–596.

    Article  Google Scholar 

  • Marquet, P. A., M. Fernández, S. A. Navarrete & C. Valdovinos, 2004. Diversity emerging: towards a deconstruction of biodiversity patterns. In Lomolino, M. & L. Heaney (eds.), Frontiers of Biogeography: New Directions in the Geography of Nature. Cambridge University Press, Cambridge: 191–209.

    Google Scholar 

  • McKinney, M. L., 2006. Urbanization as a major cause of biotic homogenization. Biological Conservation 127: 247–260.

    Article  Google Scholar 

  • Mittelbach, G. G., C. F. Steiner, S. M. Scheiner, K. L. Gross, H. L. Reynolds, R. B. Waide, M. R. Willig, S. I. Dodson & L. Gough, 2001. What is the observed relationship between species richness and productivity? Ecology 82: 2381–2396.

    Article  Google Scholar 

  • Nakagawa, S. & H. Schielzeth, 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution 4: 133–142.

    Article  Google Scholar 

  • Nimmo, D. G., R. Mac Nally, R. C. Cunningham, A. Haslem & A. F. Bennett, 2015. Vive la résistance: reviving resistance for 21st century conservation. Trends in Ecology and Evolution 30: 516–523.

    Article  PubMed  CAS  Google Scholar 

  • Nolby, L. E., K. D. Zimmer, M. A. Hanson & B. R. Herwig, 2015. Is the island biogeography model a poor predictor of biodiversity patterns in shallow lakes? Freshwater Biology 60: 870–880.

    Article  Google Scholar 

  • O’Hara, R. B. & D. J. Kotze, 2010. Do not log-transform count data. Methods Ecology and Evolution 1: 118–122.

    Article  Google Scholar 

  • Oliveira, T. D., A. C. Reis, C. O. Guedes, M. L. Sales, E. P. R. Braga, T. F. Ratton, B. P. Maia & A. L. B. Magalhães, 2014. Establishment of non-native guppy Poecilia reticulata (Peters, 1859) (Cyprinodontiformes: Poeciliidae) in an Municipal Park located in Minas Gerais State, Brazil. Pan-American Journal of Aquatic Sciences 9: 21–30.

    Google Scholar 

  • Orsi, M. L. & A. A. Agostinho, 1999. Introdução de espécies de peixes por escapes acidentais de tanques de cultivo em rios da Bacia do Rio Paraná, Brasil. Revista Brasileira de Zoologia 16: 557–560.

    Article  Google Scholar 

  • Ortega, J. C. G., H. F. Júlio-Jr, L. C. Gomes & A. A. Agostinho, 2015. Fish farming as the main driver of fish introductions in Neotropical reservoirs. Hydrobiologia 746: 147–158.

    Article  Google Scholar 

  • Pelicice, F. M., P. S. Pompeu & A. A. Agostinho, 2015. Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish. Fish and Fisheries 16: 697–715.

    Article  Google Scholar 

  • Prach, K. & L. R. Walker, 2011. Four opportunities for studies of ecological succession. Trends in Ecology and Evolution 26: 119–123.

    Article  PubMed  Google Scholar 

  • R Core Team, 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 1 Mar 2015.

  • Reis, R. E., S. O. Kullander & C. J. Ferraris Jr., 2003. Check List of the Freshwater Fishes of South and Central America. Edipucrs, Porto Alegre.

    Google Scholar 

  • Ricciardi, A., 2007. Are modern biological invasions an unprecedented form of global change? Conservation Biology 21: 329–336.

    Article  PubMed  Google Scholar 

  • Sanderson, E. W., M. Jaiteh, M. A. Levy, K. H. Redford, A. V. Wannebo & G. Woolmer, 2002. The human footprint and the last of the wild. BioScience 52: 891–904.

    Article  Google Scholar 

  • Santos, L. N., E. García-Berthou, A. A. Agostinho & J. D. Latini, 2011. Fish colonization of artificial reefs in a large Neotropical reservoir: material type and successional changes. Ecological Applications 21: 251–262.

    Article  PubMed  Google Scholar 

  • Santos, N. C. L., H. S. Santana, J. C. G. Ortega, R. M. Dias, L. F. Stegmann, I. M. S. Araújo, W. Severi, L. M. Bini, L. C. Gomes & A. A. Agostinho, 2017. Environmental filters predict the trait composition of fish communities in reservoir cascades. Hydrobiologia 802: 245–253.

  • Sax, D. F., J. J. Stachowicz, J. H. Brown, J. F. Bruno, M. N. Dawson, S. D. Gaines, R. K. Grosberg, A. Hastings, R. D. Holt, M. M. Mayfield, M. I. O’Connor & W. R. Rice, 2007. Ecological and evolutionary insights from species invasions. Trends in Ecology and Evolution 22: 465–471.

    Article  PubMed  Google Scholar 

  • Shea, K. & P. Chesson, 2002. Community ecology theory as a framework for biological invasions. Trends in Ecology and Evolution 17: 170–176.

    Article  Google Scholar 

  • Skóra, F., V. Abilhoa, A. A. Padial & J. R. S. Vitule, 2015. Darwin’s hypotheses to explain colonization trends: evidence from a quasi-natural experiment and a new conceptual model. Diversity and Distributions 21: 583–594.

    Article  Google Scholar 

  • Sólymos, P. & S. R. Lele, 2012. Global pattern and local variation in species-area relationships. Global Ecology and Biogeography 21: 109–120.

    Article  Google Scholar 

  • Stein, A., K. Gerstner & H. Kreft, 2014. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters 17: 866–880.

    Article  PubMed  Google Scholar 

  • Stohlgren, T. J., C. Jarnevich, G. W. Chong & P. H. Evangelista, 2006. Scale and plant invasions: a theory of biotic acceptance. Preslia 78: 405–426.

    Google Scholar 

  • Taylor, B. W. & R. E. Irwin, 2004. Linking economic activities to the distribution of exotic plants. Proceedings of the National Academy of Sciences of the United States of America 101: 17725–17730.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tilman, D., R. M. May, C. L. Lehman & M. A. Nowak, 1994. Habitat destruction and the extinction debt. Nature 371: 65–66.

    Article  Google Scholar 

  • Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S. Springer, New York.

    Book  Google Scholar 

  • Vitule, J. R. S., F. Skóra & V. Abilhoa, 2012. Homogenization of freshwater fish faunas after the elimination of a natural barrier by a dam in Neotropics. Diversity and Distributions 18: 111–120.

    Article  Google Scholar 

  • Wildlife Conservation Society (WCS) & Center for International Earth Science Information Network (CIESIN), 2005. Last of the Wild Project (LWP-2): Global human footprint dataset. http://sedac.ciesin.columbia.edu/data/collection/wildareas-v2. Accessed 1 Mar 2015.

  • Winemiller, K. O., P. B. McIntyre, L. Castello, E. Fluet-Chouinard, T. Giarrizzo, S. Nam, I. G. Baird, W. Darwall, N. K. Lujan, I. Harrison, M. L. J. Stiassny, R. A. M. Silvano, D. B. Fitzgerald, F. M. Pelicice, A. A. Agostinho, L. C. Gomes, J. S. Albert, E. Baran, M. Petrere Jr., C. Zarfl, M. Mulligan, J. P. Sullivan, C. C. Arantes, L. M. Sousa, A. A. Koning, D. J. Hoeinghaus, M. Sabaj, J. G. Lundberg, J. Armbruster, M. L. Thieme, P. Petry, J. Zuanon, G. Torrente Vilara, J. Snoeks, C. Ou, W. Rainboth, C. S. Pavanelli, A. Akama, A. van Soesbergen & L. Sáenz, 2016. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351: 128–129.

    Article  PubMed  CAS  Google Scholar 

  • Zarfl, C., A. E. Lumsdon, J. Berlekamp, L. Tydeks & K. Tockner, 2015. A global boom in hydropower dam construction. Aquatic Sciences 77: 161–170.

    Article  Google Scholar 

  • Zuur, A. F. & E. N. Ieno, 2016. A protocol for conducting and presenting results of regression-type analyses. Methods in Ecology and Evolution 7: 636–645.

    Article  Google Scholar 

  • Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York.

    Book  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Almeida-Neto, D. Bailly, L. C. Gomes, R. P. Mormul and S. M. Thomaz for their critiques of early versions of this manuscript. We thank Fagner Souza and Gabriel Deprá for reviewing the species list and the comments of two reviewers that improved the final version of our manuscript. JCGO and NCLS thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for scholarship. FHO thanks the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for a post-doctoral fellowship. CNPq provided research grants for AAA and LMB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean C. G. Ortega.

Additional information

Guest editors: John E. Havel, Sidinei M. Thomaz, Lee B. Kats, Katya E. Kovalenko & Luciano N. Santos / Aquatic Invasive Species II

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortega, J.C.G., Agostinho, A.A., Santos, N.C.L. et al. Similarities in correlates of native and introduced fish species richness distribution in Brazilian reservoirs. Hydrobiologia 817, 167–177 (2018). https://doi.org/10.1007/s10750-018-3508-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3508-0

Keywords

Navigation