Advertisement

The Kerr–Newman–(anti-)de Sitter spacetime: Extremal configurations and electrogeodesics

  • Jiří Veselý
  • Martin ŽofkaEmail author
Research Article
  • 85 Downloads

Abstract

We study motion of charged test particles, or electrogeodesics, in the Kerr–Newman–(anti-)de Sitter spacetime. We focus on the equatorial plane and the axis of symmetry where the analysis is considerably simpler. The electric charge opens up the possibility of new types of trajectories, particularly stationary points where the particle can remain indefinitely. It also influences the stability of the orbits, which can be interesting from the point of view of observations. We review the basic properties of the spacetime—the structure of its horizons, the extremal cases, the possibility of over-extreme rotation, regions admitting closed timelike curves, and the turnaround radius, among other.

Keywords

Kerr–Newman–(anti-)de Sitter Extreme horizons Electrogeodesics Effective potential 

Notes

Acknowledgements

J.V. was supported by Charles University, Project GA UK 80918. M.Ž. acknowledges support by GACR 17-13525S.

References

  1. 1.
    Carter, B.: Black hole equilibrium states. In: DeWitt, B.S., DeWitt, C. (eds.) Black Holes (1972 Les Houches Lectures). Gordon and Breach, New York (1973)Google Scholar
  2. 2.
    Hagihara, Y.: Theory of the relativistic trajectories in a gravitational field of Schwarzschild. Jpn. J. Astron. Geophys. 8, 67 (1930)Google Scholar
  3. 3.
    Carter, B.: Global structure of the Kerr family of gravitational fields. Phys. Rev. 174, 1559–1571 (1968).  https://doi.org/10.1103/PhysRev.174.1559 ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    Chandrasekhar, S.: The Mathematical Theory of Black Holes. Oxford University Press, New York (1983)zbMATHGoogle Scholar
  5. 5.
    Cebeci, H., Özdemir, N., Şentorun, S.: Motion of the charged test particles in Kerr–Newman–Taub-NUT spacetime and analytical solutions. Phys. Rev. D 93, 104031 (2016).  https://doi.org/10.1103/PhysRevD.93.104031 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Soroushfar, S., Saffari, R., Kazempour, S., Grunau, S., Kunz, J.: Detailed study of geodesics in the Kerr–Newman–(A)dS spacetime and the rotating charged black hole spacetime in \(f(R)\) gravity. Phys. Rev. D 94, 024052 (2016).  https://doi.org/10.1103/PhysRevD.94.024052 ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Hackmann, E., Xu, H.: Charged particle motion in Kerr–Newmann space-times. Phys. Rev. D 87(12), 124030 (2013).  https://doi.org/10.1103/PhysRevD.87.124030 ADSCrossRefGoogle Scholar
  8. 8.
    Gibbons, G.W., Hawking, S.W.: Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 15, 2738–2751 (1977).  https://doi.org/10.1103/PhysRevD.15.2738 ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Griffiths, J.B., Podolský, J.: Exact Space-Times in Einstein’s General Relativity. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  10. 10.
    Aghanim, N., et al.: Planck 2018 results. VI. Cosmological parameters. https://arxiv.org/pdf/1807.06209.pdf (2018). Accessed 17 June 2019
  11. 11.
    Lauer, T.R., et al.: The masses of nuclear black holes in luminous elliptical galaxies and implications for the space density of the most massive black holes. Astrophys. J. 662, 808–834 (2007).  https://doi.org/10.1086/518223 ADSCrossRefGoogle Scholar
  12. 12.
    Veselý, J.: Charged particles in space-times with an electromagnetic field. Master’s thesis, Charles University, Prague. https://dspace.cuni.cz/bitstream/handle/20.500.11956/90577/DPTX_2015_1_11320_0_484776_0_170034.pdf (2017). Accessed 22 October 2018
  13. 13.
    Cardoso, V., Gualtieri, L.: Testing the black hole ‘no-hair’ hypothesis. Class. Quant. Grav. 33(17), 174001 (2016).  https://doi.org/10.1088/0264-9381/33/17/174001 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Nielsen, A.B.: On the distribution of stellar-sized black hole spins. J. Phys. Conf. Ser. 716(1), 012002 (2016).  https://doi.org/10.1088/1742-6596/716/1/012002 CrossRefGoogle Scholar
  15. 15.
    Middleton, M.: Black hole spin: theory and observation, Chapter 3. In: Bambi, C. (ed.) Astrophysics of Black Holes: From Fundamental Aspects to Latest Developments, pp. 99–151. Springer, Berlin (2016)CrossRefGoogle Scholar
  16. 16.
    Gou, L., McClintock, J.E., Reid, M.J., Orosz, J.A., Steiner, J.F., Narayan, R., Xiang, J., Remillard, R.A., Arnaud, K.A., Davis, S.W.: The extreme spin of the black hole in Cygnus X-1. Astrophys. J. 742, 85 (2011).  https://doi.org/10.1088/0004-637X/742/2/85 ADSCrossRefGoogle Scholar
  17. 17.
    Stuchlík, Z., Slaný, P.: Equatorial circular orbits in the Kerr–de Sitter spacetimes. Phys. Rev. D 69, 064001 (2004).  https://doi.org/10.1103/PhysRevD.69.064001 ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Gibbons, G.W., Shellard, E.P.S., Rankin, S.J.: The Future of Theoretical Physics and Cosmology: Celebrating Stephen Hawking’s Contributions to Physics. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  19. 19.
    Monroe, H.: Are causality violations undesirable? Found. Phys. 38, 1065–1069 (2008).  https://doi.org/10.1007/s10701-008-9254-9 ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Andreka, H., Nemeti, I., Wuthrich, C.: A Twist in the geometry of rotating black holes: seeking the cause of acausality. Gen. Relativ. Gravit. 40, 1809–1823 (2008).  https://doi.org/10.1007/s10714-007-0577-1 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    de Felice, F., Calvani, M.: Causality violation in the Kerr metric. Gen. Relativ. Gravit. 10, 335–342 (1979).  https://doi.org/10.1007/BF00759491 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    de Felice, F., Nobili, L., Calvani, M.: Charged singularities: the causality violation. J. Phys. A 13, 3635–3641 (1980).  https://doi.org/10.1088/0305-4470/13/12/012 ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Goldstein, H., Poole, C., Safko, J.: Classical Mechanics, 3rd edn. Addison-Wesley, Boston (2000)zbMATHGoogle Scholar
  24. 24.
    Hackmann, E., Lämmerzahl, C., Kagramanova, V., Kunz, J.: Analytical solution of the geodesic equation in Kerr–(anti) de Sitter space-times. Phys. Rev. D 81, 044020 (2010).  https://doi.org/10.1103/PhysRevD.81.044020 ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Luongo, O., Quevedo, H.: Characterizing repulsive gravity with curvature eigenvalues. Phys. Rev. D 90(8), 084032 (2014).  https://doi.org/10.1103/PhysRevD.90.084032 ADSCrossRefGoogle Scholar
  26. 26.
    Boshkayev, K., Gasperin, E., Gutiérrez-Piñeres, A.C., Quevedo, H., Toktarbay, S.: Motion of test particles in the field of a naked singularity. Phys. Rev. D 93(2), 024024 (2016).  https://doi.org/10.1103/PhysRevD.93.024024 ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Stuchlík, Z., Hledík, S.: Equatorial photon motion in the Kerr–Newman spacetimes with a non-zero cosmological constant. Class. Quant. Grav. 17, 4541–4576 (2000).  https://doi.org/10.1088/0264-9381/17/21/312 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Stuchlík, Z., Bao, G., Ostgaard, E., Hledík, S.: Kerr–Newman–de Sitter black holes with a restricted repulsive barrier of equatorial photon motion. Phys. Rev. D 58, 084003 (1998).  https://doi.org/10.1103/PhysRevD.58.084003 ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Cunha, P.V.P., Herdeiro, C.A.R., Radu, E.: Fundamental photon orbits: black hole shadows and spacetime instabilities. Phys. Rev. D 96(2), 024039 (2017).  https://doi.org/10.1103/PhysRevD.96.024039 ADSCrossRefGoogle Scholar
  30. 30.
    Hejda, F., Bičák, J.: Kinematic restrictions on particle collisions near extremal black holes: a unified picture. Phys. Rev. D 95(8), 084055 (2017).  https://doi.org/10.1103/PhysRevD.95.084055 ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    De Felice, F., Calvani, M.: Orbital and vortical motion in the Kerr metric. Nuovo Cim. B 10, 447–458 (1972)ADSGoogle Scholar
  32. 32.
    Stuchlík, Z.: The motion of test particles in black-hole backgrounds with non-zero cosmological constant. Bull. Astron. Inst. Czech. 34, 129–149 (1983)ADSzbMATHGoogle Scholar
  33. 33.
    Bičák, J., Stuchlík, Z., Balek, V.: The motion of charged particles in the field of rotating charged black holes and naked singularities. Bull. Astron. Inst. Czech. 40, 65–92 (1989)ADSzbMATHGoogle Scholar
  34. 34.
    Cruz, N., Olivares, M., Villanueva, J.R.: The geodesic structure of the schwarzschild anti-de Sitter black hole. Class. Quant. Grav. 22, 1167–1190 (2005).  https://doi.org/10.1088/0264-9381/22/6/016 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Stuchlík, Z., Hledík, S.: Some properties of the Schwarzschild-de Sitter and Schwarzschild-anti-de Sitter spacetimes. Phys. Rev. D 60, 044006 (1999).  https://doi.org/10.1103/PhysRevD.60.044006 ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Faraoni, V., Lapierre-Léonard, M., Prain, A.: Turnaround radius in an accelerated universe with quasi-local mass. J. Cosmol. Astropart. Phys. 2015(10), 013–013 (2015).  https://doi.org/10.1088/1475-7516/2015/10/013 MathSciNetCrossRefGoogle Scholar
  37. 37.
    Giusti, A., Faraoni, V.: Turnaround size of non-spherical structures. Phys. Dark Univ. 26, 100353 (2019).  https://doi.org/10.1016/j.dark.2019.100353 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Mathematics and Physics, Institute of Theoretical PhysicsCharles UniversityPragueCzech Republic

Personalised recommendations