Skip to main content
Log in

Motion of charged particles in a NUTty Einstein–Maxwell spacetime and causality violation

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We investigate the motion of electrically charged test particles in spacetimes with closed timelike curves, a subset of the black hole or wormhole Reissner–Nordström-NUT spacetimes without periodic identification of time. We show that, while in the wormhole case there are closed worldlines inside a potential well, the wordlines of initially distant charged observers moving under the action of the Lorentz force can never close or self-intersect. This means that for these observers causality is preserved, which is an instance of our weak chronology protection criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The positivity condition (4.9), derived under the assumption \(\Psi (r)+4E>0\), is sufficient because \(\Psi (r)+4E\le 0\) is possible only if \(E<0\), so that \(4(\overline{l}^2-E\Psi (r)) > 0 \ge \Psi (r)(\Psi (r)+4E)\).

  2. Note that (4.13) means \(\mathcal{E}(\infty ) = \overline{b}\gamma - \beta /2 \le -1\), leading to \(W(\infty )\le 0\), so that the CWLs at \(r=0\) could be accessed by quantum tunnelling from infinity, but only if negative effective energies were allowed, which we have excluded.

  3. To transform (4.15) into (4.16), we have combined the second and fourth term of (4.15) and used (A.2).

References

  1. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  2. Hawking, S.W.: Phys. Rev. D 46, 603 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  3. Gödel, K.: Rev. Mod. Phys. 21, 447 (1949)

    Article  ADS  Google Scholar 

  4. Taub, A.H.: Ann. Math. 53, 472 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  5. Newman, E., Tamburino, L., Unti, T.: J. Math. Phys. 4, 915 (1963)

    Article  ADS  Google Scholar 

  6. Brill, D.R.: Phys. Rev. 133, B845 (1964)

    Article  ADS  Google Scholar 

  7. Misner, C.W.: J. Math. Phys. 4, 924 (1963)

    Article  ADS  Google Scholar 

  8. Zimmerman, R.L., Shahir, B.Y.: Gen. Relativ. Gravit. 21, 821 (1989)

    Article  ADS  Google Scholar 

  9. Clément, G., Gal’tsov, D., Guenouche, M.: Phys. Lett. B 750, 591 (2015). arXiv:1508.07622 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  10. Clément, G., Gal’tsov, D., Guenouche, M.: Phys. Rev. D 93, 024048 (2016). arXiv:1509.07854 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  11. Novello, M., Svaiter, N.F., Guimarães, M.E.X.: Gen. Relativ. Gravit. 25, 137 (1993)

    Article  ADS  Google Scholar 

  12. Cebeci, H., Özdemir, N., Sentorun, S.: Phys. Rev. D 93, 104031 (2016). arXiv:1512.08682 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  13. Kagramanova, V., Kunz, J., Hackmann, E., Lammerzahl, C.: Phys. Rev. D 81, 124044 (2010). arXiv:1002.4342

    Article  ADS  MathSciNet  Google Scholar 

  14. Bañados, M., Teitelboim, C., Zanelli, J.: Phys. Rev. Lett. 69, 1849 (1992). arXiv:hep-th/9204099

    Article  ADS  MathSciNet  Google Scholar 

  15. Bañados, M., Henneaux, M., Teitelboim, C., Zanelli, J.: Phys. Rev. D 48, 1506 (1993). arXiv:gr-qc/9302012

    Article  ADS  MathSciNet  Google Scholar 

  16. Moussa, K.Ait, Clément, G., Leygnac, C.: Class. Quantum Grav. 20, L277 (2003). arXiv:gr-qc/0303042

    Article  ADS  Google Scholar 

  17. Bouchareb, A., Clément, G.: Class. Quantum Grav. 24, 5581 (2007). arXiv:0706.0263

    Article  ADS  Google Scholar 

  18. Anninos, D., Li, W., Padi, M., Song, W., Strominger, A.: JHEP 0903, 130 (2009). arXiv:0807.3040

    Article  ADS  Google Scholar 

  19. Moussa, K.Ait, Clément, G., Guennoune, H., Leygnac, C.: Phys. Rev. D 78, 064065 (2008). [arXiv:0807.4241]

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Dmitry Gal’tsov for fruitful discussions and suggestions, and Júlio Fabris for valuable comments. MG acknowledges the support of the Ministry of Higher Education and Scientific Research of Algeria (MESRS) under Grant 0092009009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérard Clément.

Appendix: Circular orbits with \(r\ne 0\)

Appendix: Circular orbits with \(r\ne 0\)

From (3.15) and (3.16), \(\beta \) and \(\delta \) can be expressed in terms of z as

$$\begin{aligned} \beta = \frac{\alpha + \overline{l}^2z^2}{z}, \quad \delta = \frac{\alpha - \overline{l}^2z^2}{z}. \end{aligned}$$
(A.1)

Using this, we obtain from (3.10)

$$\begin{aligned} y_0 = \frac{-\delta (\alpha +\overline{l}^{2}) + \beta (\alpha -\overline{l}^{2})}{2\alpha \overline{l}^{2}\delta } = \frac{1-z^2}{\overline{l}^2z^2-\alpha }, \end{aligned}$$
(A.2)

which can be inverted to

$$\begin{aligned} z^2 = \frac{1+\alpha y_0}{1+\overline{l}^2 y_0}. \end{aligned}$$
(A.3)

We also obtain from (A.1) and (A.2) the value of the effective energy \(\mathcal{E}(r_0)=E_0+(\beta /2)y_0\):

$$\begin{aligned} \mathcal{E}(r_0) = \frac{(\overline{l}^2-\alpha )z}{\overline{l}^2z^2-\alpha } = (1+\overline{l}^2y_0)z, \end{aligned}$$
(A.4)

so that the effective energy is positive provided

$$\begin{aligned} z>0. \end{aligned}$$
(A.5)

In the black-hole case or extreme-black-hole case, \(-2\le \alpha \le -1\), (A.3) is positive definite provided

$$\begin{aligned} 0< y_0 < y_h = - \frac{1}{\alpha }, \end{aligned}$$
(A.6)

so that the circular orbits must be outside the horizon (\(r_0>r_h\)). The allowed range of z is then from (A.2)

$$\begin{aligned} 0< z < 1, \end{aligned}$$
(A.7)

leading from (A.1) to the condition for the existence of these circular orbits:

$$\begin{aligned} \overline{l}^2 > \beta -\alpha . \end{aligned}$$
(A.8)

In the wormhole case, \(\alpha >-1\), \(y_0\) can vary in the full range \(0<y_0<1\), leading to the allowed range of z

$$\begin{aligned} \begin{array}{lcc} \displaystyle \frac{\overline{b}}{\gamma }< z< 1 &{}\qquad \mathrm{if} &{}\quad \overline{l}^2>\alpha , \\ 1< z< \displaystyle \frac{\overline{b}}{\gamma }&{}\qquad \mathrm{if} &{}\quad \overline{l}^2<\alpha \end{array} \end{aligned}$$
(A.9)

[where \(\overline{b}\) and \(\gamma \) are related to \(\alpha \) and \(\overline{l}^2\) by (3.8)]. Both cases lead to the same bounds for the existence of an unstable circular orbit of radius \(r=\pm r_0\),

$$\begin{aligned} \frac{\alpha + \overline{l}^2 + 2\alpha \overline{l}^2}{\overline{b}\gamma }< \beta < \alpha + \overline{l}^2. \end{aligned}$$
(A.10)

For \(\alpha >0\), the lower bound ensures that the first existence condition (3.13) is satisfied, due to the identity

$$\begin{aligned} (\alpha + \overline{l}^2 + 2\alpha \overline{l}^2)^2 = 4\alpha \overline{l}^2\overline{b}^2\gamma ^2 + (\alpha - \overline{l}^2)^2. \end{aligned}$$
(A.11)

Note that in the parameter range (A.10) there is also from (3.9) a stable circular orbit at \(r=0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clément, G., Guenouche, M. Motion of charged particles in a NUTty Einstein–Maxwell spacetime and causality violation. Gen Relativ Gravit 50, 60 (2018). https://doi.org/10.1007/s10714-018-2388-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-018-2388-y

Keywords

Navigation