Skip to main content
Log in

Quantitative trait loci mapping for yield components and kernel-related traits in multiple connected RIL populations in maize

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Grain yield is one of the most important and complex quantitative traits in maize breeding. In the present study, a total of 11 connected RIL populations, derived from crosses between elite inbreed “Huangzaosi” as the common parent and 11 elite inbreeds, were evaluated for five yield components and kernel-related traits under six environments. Quantitative trait loci (QTL) were detected for the traits under each environment and in joint analysis across all environments for each population. A total of 146 major QTL with R2 > 10 % in at least one environment and also detected based on joint analysis across all environments were identified in the 11 populations. Lqkwei4 conferring kernel weight and Lqklen4-1 conferring kernel length both located in the adjacent marker intervals in bin 4.05 were stably expressed in four environments and in joint analysis across six environments, with the largest R2 over 27 and 24 % in a single environment, respectively. Moreover, all major QTL detected in the 11 populations were aligned on the IBM2 2008 neighbors reference map. Totally 16 common QTL (CQTL) were detected. Seven important CQTL (CQTL1-2, CQTL1-3, CQTL4-1, CQTL4-2, CQTL4-3, CQTL4-4, and CQTL6-1) were located in bin 1.07, 1.10, 4.03, 4.05, 4.08, 4.09 and 6.01–6.02, respectively. These chromosomal regions could be targets for fine mapping and marker-assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ajmone Marsan P, Gorni C, Chitto A, Redaelli R, Van Vijk R, Stam P, Motto M (2001) Identification of QTLs for grain yield and grain-related traits of maize (Zea mays L.) using an AFLP map, different testers, and cofactor analysis. Theor Appl Genet 102:230–243

    Article  Google Scholar 

  • Ajnone-Marsan P, Monfredini G, Ludwig W, Melchinger A, Franceschini P, Pagnotto G, Motto M (1995) In an elite cross of maize a major quantitative trait locus controls one-fourth of the genetic variation for grain yield. Theor Appl Genet 90:415–424

    Article  Google Scholar 

  • Austin D, Lee M (1996) Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize. Theor Appl Genet 92:817–826

    Article  CAS  Google Scholar 

  • Austin DF, Lee M, Hallauer AR, Veldboom LR (2000) Genetic mapping in maize with hybrid progeny across testers and generations: grain yield and grain moisture. Crop Sci 40:30–39

    Article  Google Scholar 

  • Azanza F, Tadmor Y, Klein B, Rocheford T, Juvik J (1996) Quantitative trait loci influencing chemical and sensory characteristics of eating quality in sweet corn. Genome 39:40–50

    Article  PubMed  CAS  Google Scholar 

  • Beavis W, Grant D, Albertsen M, Fincher R (1991) Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor Appl Genet 83:141–145

    Article  Google Scholar 

  • Brown PJ, Upadyayula N, Mahone GS, Tian F, Bradbury PJ, Myles S, Holland JB, Flint-Garcia S, McMullen MD, Buckler ES (2011) Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet 7:e1002383

    Article  PubMed  CAS  Google Scholar 

  • Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC (2009) The genetic architecture of maize flowering time. Science 325:714–718

    Article  PubMed  CAS  Google Scholar 

  • Chen DH, Ronald P (1999) A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol Rep 17:53–57

    Article  CAS  Google Scholar 

  • Cook JP, McMullen MD, Holland JB, Tian F, Bradbury P, Ross-Ibarra J, Buckler ES, Flint-Garcia SA (2012) Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels. Plant Physiol 158:824–834

    Article  PubMed  CAS  Google Scholar 

  • Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    Article  PubMed  CAS  Google Scholar 

  • Goldman IL, Rocheford TR, Dudley JW (1994) Molecular markers associated with maize kernel oil concentration in an Illinois high protein × Illinois low protein cross. Crop Sci 34:908–915

    Article  Google Scholar 

  • Gupta PK, Rustgi S, Kumar N (2006) Genetic and molecular basis of grain size and grain number and its relevance to grain productivity in higher plants. Genome 49:565–571

    Article  PubMed  Google Scholar 

  • Hallauer AR, Miranda JB (1988) Quantitative genetics in maize breeding, 2nd edn. Iowa State University, Ames

    Google Scholar 

  • Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin In Plant Biol 10:156–161

    Article  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174

    Article  PubMed  CAS  Google Scholar 

  • Lee M, Austin DF (1998) Detection of quantitative trait loci for grain yield and yield components in maize across generations in stress and nonstress environments. Crop Sci 38:1296–1308

    Article  Google Scholar 

  • Lee M, Veldboom LR (1996) Genetic mapping of quantitative trait loci in maize in stress and nonstress environments: I. Grain yield and yield components. Crop Sci 36:1310–1319

    Article  Google Scholar 

  • Li Y, Wang TY (2010) Germplasm base of maize breeding in China and formation of foundation parents. J Maize Sci 18(5):1–8

    Article  Google Scholar 

  • Li Z, Pinson SRM, Stansel JW, Paterson AH (1998) Genetic dissection of the source-sink relationship affecting fecundity and yield in rice (Oryza sativa L.). Mol Breed 4:419–426

    Article  CAS  Google Scholar 

  • Li Y, Niu S, Dong Y, Cui D, Wang Y, Liu Y, Wei M (2007) Identification of trait-improving quantitative trait loci for grain yield components from a dent corn inbred line in an advanced backcross BC2F2 population and comparison with its F2:3 population in popcorn. Theor Appl Genet 115:129–140

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Li X, Li J, Fu J, Wang Y, Wei M (2009a) Dent corn genetic background influences QTL detection for grain yield and yield components in high-oil maize. Euphytica 169:273–284

    Article  Google Scholar 

  • Li Y, Wang Y, Shi Y, Song Y, Wand T, Li Y (2009b) Correlation analysis and QTL mapping for traits of kernel structure and yield components in maize. Sci Agric Sin 42:408–418

    CAS  Google Scholar 

  • Li Q, Li L, Yang X, Warburton M, Bai G, Dai J, Li J, Yan J (2010) Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC Plant Biol 10:143

    Article  PubMed  Google Scholar 

  • Lima MLA, de Souza CL, Bento DAV, de Souza AP, Carlini-Garcia LA (2006) Mapping QTL for grain yield and plant traits in a tropical maize population. Mol Breed 17:227–239

    Article  Google Scholar 

  • Lin HX, Qian HR, Zhuang JY, Lu J, Min SK, Xiong ZM, Huang N, Zheng KL (1996) RFLP mapping of QTLs for yield and related characters in rice (Oryza sativa L.). Theor Appl Genet 92:920–927

    Article  CAS  Google Scholar 

  • Liu XH, Tan ZB, Rong TZ (2009) Molecular mapping of a major QTL conferring resistance to SCMV based on immortal RIL population in maize. Euphytica 167:229–235

    Article  CAS  Google Scholar 

  • Lübberstedt T, Melchinger AE, Utz HF, Klein D, Schön CC (1997) QTL mapping in testcrosses of European flint lines of maize: I. Comparison of different testers for forage yield traits. Crop Sci 37:921–931

    Article  Google Scholar 

  • McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740

    Article  PubMed  CAS  Google Scholar 

  • Melchinger AE, Herrmann RG, Schön CC, Brunklaus-Jung E, Seitzer JF, Boppenmaier J (1994) RFLP mapping in maize: quantitative trait loci affecting testcross performance of elite European flint lines. Crop Sci 34:378–389

    Article  Google Scholar 

  • Melchinger AE, Utz HF, Schön CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149:383–403

    PubMed  CAS  Google Scholar 

  • Melchinger AE, Mihaljevic R, Utz HF (2004) Congruency of quantitative trait loci detected for agronomic traits in testcrosses of five populations of European maize. Crop Sci 44:114–124

    Article  Google Scholar 

  • Messmer R, Fracheboud Y, Bänziger M, Vargas M, Stamp P, Ribaut JM (2009) Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theor Appl Genet 119:913–930

    Article  PubMed  Google Scholar 

  • Muranty H (1996) Power of tests for quantitative trait loci detection using full-sib families in different schemes. Heredity 76:156–165

    Article  Google Scholar 

  • Peng B, Li Y, Wang Y, Liu C, Liu Z, Tan W, Zhang Y, Wang D, Shi Y, Sun B (2011) QTL analysis for yield components and kernel-related traits in maize across multi-environments. Theor Appl Genet 122:1305–1320

    Article  PubMed  Google Scholar 

  • Qiao Y, Jiang W, Rahman ML, Chu SH, Piao R, Han L, Koh HJ (2008) Comparison of molecular linkage maps and QTLs for morphological traits in two reciprocal backcross populations of rice. Mol Cells 25:417

    PubMed  CAS  Google Scholar 

  • Rahman ML, Chu SH, Choi M, Li Qiao Y, Jiang W, Piao R, Khanam S, Cho Y, Jeung J, Jena KK (2007) Identification of QTLs for some agronomic traits in rice using an introgression line from Oryza minuta. Mol Cells 24:16

    PubMed  CAS  Google Scholar 

  • Revilla P, Malvar R, Ordás R, Butrón A (1999) Relationship among kernel weight, early vigor, and growth in maize. Crop Sci 39:654–658

    Article  Google Scholar 

  • Ribaut JM, Jiang C, Gonzalez-de-Leon D, Edmeades G, Hoisington D (1997) Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor Appl Genet 94:887–896

    Article  Google Scholar 

  • Rocheford TR, Berke TG (1995) Quantitative trait loci for flowering, plant and ear height, and kernel traits in maize. Crop Sci 35:1542–1549

    Article  Google Scholar 

  • SAS Institute Inc. (1999) SAS user’s guide, release 8.01 edition. SAS Institute Inc., Cary

    Google Scholar 

  • Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40:1023–1028

    Article  PubMed  CAS  Google Scholar 

  • Smith O, Beavis W, Grant D, Fincher R (1994) Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Sci 34:882–896

    Article  Google Scholar 

  • Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    Article  PubMed  CAS  Google Scholar 

  • Stuber CW, Lincoln SE, Wolff D, Helentjaris T, Lander E (1992) Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132:823–839

    PubMed  CAS  Google Scholar 

  • Tang J, Yan J, Ma X, Teng W, Wu W, Dai J, Dhillon BS, Melchinger AE, Li J (2010) Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population. Theor Appl Genet 120:333–340

    Article  PubMed  Google Scholar 

  • Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162

    Article  PubMed  CAS  Google Scholar 

  • Utz HF (1997) PLABSTAT: a computer program for statistical analysis of plant breeding experiments. (Accessed 3Bwin of Feb 2010). Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, Stuttgart, Germany. http://www.uni-hohenheim.de/~ipspwww/soft.html

  • Vargas M, van Eeuwijk FA, Crossa J, Ribaut JM (2006) Mapping QTLs and QTL × environment interaction for CIMMYT maize drought stress program using factorial regression and partial least squares methods. Theor Appl Genet 112:1009–1023

    Article  PubMed  CAS  Google Scholar 

  • Veldboom LR, Lee M (1994) Molecular-marker-facilitated studies of morphological traits in maize. II: Determination of QTLs for grain yield and yield components. Theor Appl Genet 89:451–458

    Article  CAS  Google Scholar 

  • Wan X, Weng J, Zhai H, Wang J, Lei C, Liu X, Guo T, Jiang L, Su N, Wan J (2008) Quantitative trait loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hotspot region on chromosome 5. Genetics 179:2239–2252

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Liu C, Wang T, Shi Y, Song Y, Li Y (2007) QTL analysis of yield components in maize under different water regimes. J Plant Genet Resour 8:179–183

    CAS  Google Scholar 

  • Xing Y, Tan Y, Hua J, Sun X, Xu C, Zhang Q (2002) Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet 105:248–257

    Article  PubMed  CAS  Google Scholar 

  • Xu S (1998) Mapping quantitative trait loci using multiple families of line crosses. Genetics 148:517–524

    PubMed  CAS  Google Scholar 

  • Yan J, Tang H, Huang Y, Zheng Y, Li J (2006) Quantitative trait loci mapping and epistatic analysis for grain yield and yield components using molecular markers with an elite maize hybrid. Euphytica 149:121–131

    Article  CAS  Google Scholar 

  • Yang J, Zhu J, Williams RW (2007) Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics 23:1527–1536

    Article  PubMed  CAS  Google Scholar 

  • Zhao F, Meng X, Li W, Xu X, Wang B, Guo B (2008) Inheritance relation of maize resistant genes among foundation parent huangzaosi and its derivative lines and hybrids. J Maize Sci 16:15–18

    CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by grants provided by the Ministry of Science and Technology of China (2011CB100100, 2009CB118401), International Science and Technology Cooperation Program of China (2011DFA30450) and Natural Science Foundation of China (U1138304). We thank the help of Prof. Jiankang Wang and Dr. Huihui Li in the data analysis and of Dr. Bailin Li for technique advice.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianyu Wang or Yu Li.

Additional information

Y. Li—Co-author, equally contribute to the work

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 96 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Li, Y., Sun, B. et al. Quantitative trait loci mapping for yield components and kernel-related traits in multiple connected RIL populations in maize. Euphytica 193, 303–316 (2013). https://doi.org/10.1007/s10681-013-0901-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-013-0901-7

Keywords

Navigation